The Swiss confederation aims to phase out nuclear power production with its Energy Strategy 2050 program by increasing the renewable energy contribution to its overall energy generation. Hydroelectricity, which is the most important form of renewable energy in Switzerland, supplying almost 60% of the electricity in 2015, should increase its production capacity to achieve this goal. The case study presented in this paper focuses on the replacement of the third turbine in the Gondo high-head power plant with a turbine with a higher discharge capacity. The results of one-dimensional (1D) numerical simulations shown that throttling the surge tank is an efficient measure to adapt the existing hydraulic system for the increased discharge. Physical-scale modeling was performed to validate the design of the grid throttle placed at the bottom of the lower chamber of the existing surge tank. The grid throttle geometry and its head losses are compared with two existing similar throttles in Switzerland. Finally, prototype tests of the temporal evolution of water levels in the surge tank using the throttle coefficients obtained experimentally showed good agreement. Hybrid modeling using a combination of 1D numerical models, threedimensional (3D) physical models, and prototype tests are highly recommended for checking the transient performance of the waterway after a refurbishment of turbines with increased design discharge. Furthermore, placing a throttle at the bottom of an existing surge tank is often an effective and economical solution in the case of small increases in installed capacity.
In order to increase the installed capacity, the refurbishment of Gondo high-head power plant required a modification of the existing surge tank by installing a throttle at its entrance. In a previous study, the geometry of this throttle was optimized by physical modeling to achieve the target loss coefficients as identified by a transient 1D numerical analysis. This study complements previous analyses by means of 3D numerical modeling using the commercial software ANSYS-CFX 19 R1. Results show that: (i) a 3D computational fluid dynamics (CFD) model predicts sufficiently accurate local head loss coefficients that agree closely with the findings of the physical model; (ii) in contrast to a standard surge tank, the presence of an internal gallery in the surge tank proved to be of insignificant effect on a surge tank equipped with a throttle, as the variations in the section of the tank cause negligible local losses compared to the ones induced by the throttle; (iii) CFD investigations of transient flow regimes revealed that the head loss coefficient of the throttle only varies for flow ratios below 20% of the total flow in the system, without significantly affecting the conclusions of the 1D transient analysis with respect to minimum and maximum water level in the surge tank as well as pressure peaks below the surge tank. This study highlights the importance of examining the characteristics of a hydraulic system from a holistic approach involving hybrid modeling (1D, 3D numerical and physical) backed by calibration as well as validation with in-situ measurements. This results in a more rapid and economic design of throttled surge tanks that makes full use of the advantages associated with each modeling strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.