Epidermal growth factor through the stimulation of epidermal growth factor receptor (EGFR) plays a critical role in the activation of MAPKs and phosphatidylinositol-3-protein kinase/AKT cell survival pathways attributed in many pathological conditions. At the cellular level, such functions involve EGFR overactivation and phosphorylation. In the present study, we describe that human embryonic kidney-293 cells transfected with somatostatin (SST) receptor 5 (SSTR5) exhibit inhibition of EGFR phosphorylation and modulate MAPK and phosphatidylinositol-3-protein kinase/AKT cell survival signaling. Furthermore, suppression of EGFR by using small interference RNA and an antagonist (AG1478) potentiates the SST effect via activation of SSTR5 on signaling molecules. In wild-type human embryonic kidney-293 cells, EGFR/ErbB2 exists as constitutive heterodimers. The presence of SSTR5 leads to the dissociation of the heteromeric complex of EGFR/ErbB2 and display preferential heterodimerization between SSTR5 and EGFR in an agonist-dependent manner. These findings highlight a new undiscovered mechanism and potential role of SSTR5 to attenuate the EGFR-mediated signaling pathways involved in tumorigenesis. Our data indicate that the activation and/or overexpression of SST receptors along with the inhibition of EGFR will serve as an important therapeutic approach in the treatment of ErbB-positive tumors.
Epidermal growth factor (EGF) regulates normal and tumor cell proliferation via epidermal growth factor receptor (EGFR) phosphorylation, homo- or heterodimerization and activation of mitogen-activated protein kinases (MAPKs) and PI3K/AKT cell survival pathways. In contrast, SST via activation of five different receptor subtypes inhibits cell proliferation and has been potential target in tumor treatment. To gain further insight for the effect of SSTRs on EGFR activated signaling, we determine the role of SSTR1 and SSTR1/5 in human embryonic kidney (HEK) 293 cells. We here demonstrate that cells transfected with SSTR1 or SSTR1/5 negatively regulates EGF mediated effects attributed to the inhibition of EGFR phosphorylation, MAPKs as well as the cell survival signaling. Furthermore, SSTR effects were significantly enhanced in cells when EGFR was knock down using siRNA or treated with selective antagonist (AG1478). Most importantly, the presence of SSTR in addition to modulating signaling pathways leads to the dissociation of the constitutive and EGF induced heteromeric complex of EGFR/ErbB2. Furthermore, cells cotransfected with SSTR1/5 display pronounced effect of SST on the signaling and dissociation of the EGFR/ErbB2 heteromeric complex than the cells expressing SSTR1 alone. Taken together this study provides the first evidence that the presence of SSTR controls EGF mediated cell survival pathway via dissociation of ErbB heteromeric complex. We propose that the activation of SSTR and blockade of EGFR might serve novel therapeutic approach in inhibition of tumor proliferation.
BackgroundIn the present study, we describe heterodimerization between human-Somatostatin Receptor 5 (hSSTR5) and β2-Adrenergic Receptor (β2AR) and its impact on the receptor trafficking, coupling to adenylyl cyclase and signaling including mitogen activated protein kinases and calcineurin-NFAT pathways.MethodsWe used co-immunoprecipitation, photobleaching- fluorescence resonance energy transfer and Fluorescence assisted cell sorting analysis to characterize heterodimerization between SSTR5 and β2AR.ResultsOur results indicate that hSSTR5/β2AR exist as preformed heterodimers in the basal condition which is enhanced upon co-activation of both receptors. In contrast, the activation of individual receptors leads to the dissociation of heterodimers. Receptor coupling to adenylyl cyclase displayed predominant effect of β2AR, however, somatostatin mediated inhibition of cAMP was enhanced upon blocking β2AR. Our results indicate hSSTR5 mediated significant activation of ERK1/2 and inhibition of phospho-p38. The phospho-NFAT level was enhanced in cotransfected cells indicating the blockade of calcineurin mediated dephosphorylation of NFAT upon receptor heterodimerization.ConclusionThese data for the first time unveil a novel insight for the role of hSSTR5/β2AR in the modulation of signaling pathways which has not been addressed earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.