The microstructure evolution of electrodeposited copper thin films was studied at room and elevated temperatures. The effects of isothermal and nonisothermal treatments were investigated. The heating rate in nonisothermal treatment was found to significantly control the recrystallization temperature and time. The Johnson-Mehl-Avrami-Kolmogorov model was applied to describe the fraction recrystallized under isothermal conditions. It was proven that the recrystallization of copper films during nonisothermal annealing can be modeled using the additivity rule. Based on the isothermal results, a model was applied to predict the recrystallization kinetics during nonisothermal heat treatments.
Thermal processing of all aluminum alloy conductors (AAAC) is an important step that is performed to enhance the electrical and mechanical properties after the drawing process. In these 6xxx alloys, mechanical strength and electrical conductivity are normally two mutually exclusive properties. With the increased demand for high performance power conductors, it is important to understand and control microstructural evolution processes (e.g., recovery and the formation of nanoscale precipitates) in these alloys for better electrical and mechanical characteristics. In this study, heat treatment was performed on as-drawn 6201 AAAC wire conductors. The variations in tensile strength and electrical resistivity were quantitatively studied as a function of both the treatment temperature and holding time. Two wire diameters commonly used in the manufacturing of medium and high voltage power cables were used: 1.7 mm and 3.5 mm. From the obtained data, significant changes in the electrical resistivity and tensile strength were observed with increasing the treatment time. For both wire diameters, it was observed that the correlation between strength and resistivity can be described by a simple exponential relationship. This link could be useful in predicting mechanical strength by monitoring electrical resistivity variations during industrial heat treatment of AAAC wire conductors.
In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ-Al 2O 3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 ∘C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.
To add to the development efforts in enhancing the capabilities of localized electrodeposition (LED) fabrication technique, this paper presents serial and parallel deposition algorithms to fabricate array microstructures. Such arrays can be implemented as microsensors in neural recording applications or as antenna arrays in ultra high frequency applications. Also, magnetic tip microarrays for tissue engineering can be realized. In the case of serial fabrication, an array of high aspect ratio microstructures is realized using the conventional single-tip microelectrode while implementing a multistep fabrication algorithm. In this algorithm, the fabricated microstructure elements within the array are realized one at a time. In the parallel deposition algorithm, the array is realized using a multitip array microelectrode while implementing a single step fabrication algorithm. In this algorithm, the microstructure elements within the array are fabricated simultaneously. The proposed algorithms are compared through a demonstration of fabricated array microstructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.