The research presented herein follows an urgent global need for the development of novel surface engineering techniques that would allow the fabrication of next-generation cardiovascular stents, which would drastically reduce cardiovascular diseases (CVD). The combination of hydrothermal treatment (HT) and treatment with highly reactive oxygen plasma (P) allowed for the formation of an oxygen-rich nanostructured surface. The morphology, surface roughness, chemical composition and wettability of the newly prepared oxide layer on the Ti substrate were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis. The alteration of surface characteristics influenced the material’s bio-performance; platelet aggregation and activation was reduced on surfaces treated by hydrothermal treatment, as well as after plasma treatment. Moreover, it was shown that surfaces treated by both treatment procedures (HT and P) promoted the adhesion and proliferation of vascular endothelial cells, while at the same time inhibiting the adhesion and proliferation of vascular smooth muscle cells. The combination of both techniques presents a novel approach for the fabrication of vascular implants, with superior characteristics.
Implant-associated infections (IAI) are a common cause for implant failure, increased medical costs, and critical for patient healthcare. Infections are a result of bacterial colonization, which leads to biofilm formation on the implant surface. Nanostructured surfaces have been shown to have the potential to inhibit bacterial adhesion mainly due to antibacterial efficacy of their unique surface nanotopography. The change in topography affects the physicochemical properties of their surface such as surface chemistry, morphology, wettability, surface charge, and even electric field which influences the biological response. In this study, a conventional and cost-effective hydrothermal method was used to fabricate nanoscale protrusions of various dimensions on the surface of Ti, Ti 6 Al 4 V, and NiTi materials, commonly used in biomedical applications. The morphology, surface chemistry, and wettability were analyzed using scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), and water contact angle analysis. The antibacterial efficacy of the synthesized nanostructures was analyzed by the use of Escherichia coli bacterial strain. XPS analysis revealed that the concentration of oxygen and titanium increased on Ti and Ti 6 Al 4 V, which indicates that TiO 2 is formed on the surface. The concentration of oxygen and titanium however decreased on the NiTi surface after hydrothermal treatment, and also a small amount of Ni was detected. SEM analysis showed that by hydrothermal treatment alterations in the surface topography of the TiO 2 layer could be achieved. The oxide layer on the NiTi prepared by the hydrothermal method contains a low amount of Ni (2.8 atom %), which is especially important for implantable materials. The results revealed that nanostructured surfaces significantly reduced bacterial adhesion on the Ti, Ti 6 Al 4 V, and NiTi surface compared to the untreated surfaces used as a control. Furthermore, two sterilization techniques were also studied to evaluate the stability of the nanostructure and its influence on the antibacterial activity. Sterilization with UV light seems to more efficiently inhibit bacterial growth on the hydrothermally modified Ti 6 Al 4 V surface, which was further reduced for hydrothermally treated Ti and NiTi. The developed nanostructured surfaces of Ti and its alloys can pave a way for the fabrication of antibacterial surfaces that reduce the likelihood of IAI.
In this review paper, we theoretically explain the origin of electrostatic interactions between lipid bilayers and charged solid surfaces using a statistical mechanics approach, where the orientational degree of freedom of lipid head groups and the orientational ordering of the water dipoles are considered. Within the modified Langevin Poisson–Boltzmann model of an electric double layer, we derived an analytical expression for the osmotic pressure between the planar zwitterionic lipid bilayer and charged solid planar surface. We also show that the electrostatic interaction between the zwitterionic lipid head groups of the proximal leaflet and the negatively charged solid surface is accompanied with a more perpendicular average orientation of the lipid head-groups. We further highlight the important role of the surfaces’ nanostructured topography in their interactions with biological material. As an example of nanostructured surfaces, we describe the synthesis of TiO2 nanotubular and octahedral surfaces by using the electrochemical anodization method and hydrothermal method, respectively. The physical and chemical properties of these nanostructured surfaces are described in order to elucidate the influence of the surface topography and other physical properties on the behavior of human cells adhered to TiO2 nanostructured surfaces. In the last part of the paper, we theoretically explain the interplay of elastic and adhesive contributions to the adsorption of lipid vesicles on the solid surfaces. We show the numerically predicted shapes of adhered lipid vesicles corresponding to the minimum of the membrane free energy to describe the influence of the vesicle size, bending modulus, and adhesion strength on the adhesion of lipid vesicles on solid charged surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.