Emerging data suggest that the effects of infection with SARS-CoV-2 are far reaching extending beyond those with severe acute disease. Specifically, the presence of persistent symptoms after apparent resolution from COVID-19 have frequently been reported throughout the pandemic by individuals labeled as long-haulers. The purpose of this study was to assess for symptoms at days 0-10 and 61+ among subjects with PCR-confirmed SARS-CoV-2 infection. The UCCORDS dataset was used to identify 1407 records that met inclusion criteria. Symptoms attributable to COVID-19 were extracted from the electronic health record, Symptoms reported over the previous year prior to COVID-19 were excluded, using nonnegative matrix factorization (NMF) followed by graph lasso to assess relationships between symptoms. A model was developed predictive for becoming a long-hauler based on symptoms. 27% reported persistent symptoms after 60 days. Women were more likely to become long- haulers, and all age groups were represented with those aged 50 +/- 20 years comprising 72% of cases. Presenting symptoms included palpitations, chronic rhinitis, dysgeusia, chills, insomnia, hyperhidrosis, anxiety, sore throat, and headache among others. We identified 5 symptom clusters at day 61+: chest pain-cough, dyspnea-cough, anxiety-tachycardia, abdominal pain-nausea, and low back pain-joint pain. Long-haulers represent a very significant public health concern, and there are no guidelines to address their diagnosis and management. Additional studies are urgently needed that focus on the physical, mental, and emotional impact of long-term COVID-19 survivors who become long-haulers.
Post-acute sequelae of SARS-CoV-2 (PASC) is defined as persistent symptoms after apparent recovery from acute COVID-19 infection, also known as COVID-19 long-haul. We performed a retrospective review of electronic health records (EHR) from the University of California COvid Research Data Set (UC CORDS), a de-identified EHR of PCR-confirmed SARS-CoV-2-positive patients in California. The purposes were to (1) describe the prevalence of PASC, (2) describe COVID-19 symptoms and symptom clusters, and (3) identify risk factors for PASC. Data were subjected to non-negative matrix factorization to identify symptom clusters, and a predictive model of PASC was developed. PASC prevalence was 11% (277/2,153), and of these patients, 66% (183/277) were considered asymptomatic at days 0–30. Five PASC symptom clusters emerged and specific symptoms at days 0–30 were associated with PASC. Women were more likely than men to develop PASC, with all age groups and ethnicities represented. PASC is a public health priority.
I n this paper we briefly describe a set of designs that can serve as examples f o r High Level Synthesis (HLS behavioral finite state machines t o more complex designs such as microprocessors and floating point units. Most of the designs are described in the VHDL language at the behavioral level. We divide the desagns into two categories. The first category contains designs that have documentation on the specifications of the designs along with the strategy used to test the individual design models. The second category contains examples used in many HLS papers, but lack comprehensive documentation and/or test vectors. systems. The designs vary in complexity from simp i e
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.