Soil microorganisms and their activities are essential for maintaining soil health and fertility. Microorganisms can be negatively affected by application of herbicides. Although effects of herbicides on microorganisms are widely studied, there is a lack of information for chloroacetamide herbicide dimethachlor. Thus, dimethachlor and well known linuron were applied to silty-loam luvisol and their effects on microorganisms were evaluated during112 days long laboratory assay. Dimethachlor and linuron were applied in doses 1.0 kg ha−1 and 0.8 kg ha−1 corresponding to 3.33 mg kg−1 and 2.66 mg kg−1 respectively. Also 100-fold doses were used for magnification of impacts. Linuron in 100-fold dose caused minor increase of respiration, temporal increase of soil microbial biomass, decrease of soil dehydrogenase activity, and altered microbial community. Dimethachlor in 100-fold dose significantly increased respiration; microbial biomass and decreased soil enzymatic activities. Microbial composition changed significantly, Proteobacteria abundance, particularly Pseudomonas and Achromobacter genera increased from 7 to 28th day. In-silico prediction of microbial gene expression by PICRUSt2 software revealed increased expression of genes related to xenobiotic degradation pathways. Evaluated characteristics of microbial community and activity were not affected by herbicides in recommended doses and the responsible use of both herbicides will not harm soil microbial community.
Rapeseed is an important oil crop strongly dependent on high agrochemical inputs. Some pathogens, including Leptosphaeria maculans, cause blackleg disease and can drastically decrease yields. Microbial inoculants seem to be a promising solution to these problems. However, a selection of potent bacterial strains able to improve growth and/or suppress disease is needed. Endophytic bacteria (n = 38) isolated from rapeseed plants with exceptionally good growth were screened for plant growth promoting (PGP) traits and L. maculans antifungal activity. A majority of isolates (35) showed the ability to produce siderophores, 17 isolates solubilized phosphate, and 28 isolates inhibited the growth of L. maculans. The six most promising isolates belonging to Bacillus genera were characterized in detail and compared to two previously published PGP strains. Plant growth measured as total weight and root length of rapeseed seedlings was stimulated by all isolates in comparison to control. The best isolate, 1L6, preliminary identified as Bacillus pumilus showed the highest phosphate solubilization, IAA and HCN production, and growth promotion of plants. Isolates with high antifungal activity in screening showed good potential to suppress disease on plants, with 87% reduction of lesions caused by L. maculans. These strains are good candidates to be explored under field use either solely or in combination.
Bacteria with positive properties on plant vitality are also called PGPB (Plant Growth Promoting Bacteria). Their presence can be observed not only in the root area but also in the above-ground parts of plants like endophytic bacteria. The aim of our study was to characterize promoting features of bacteria from Bacillus genus and compare them with Pseudomonas simiae WCS417 (plant growth promoting strain). The work was carried out in locality Kolíňany near Nitra (40°26´46´´N, 79°58´56´´W) and root samples were taken from 6 randomly selected plants of maize (Zea mays L.) in vegetative plant growth stage BBCH 14-15. Bacteria isolated from plant roots were identified and tested to biochemical parameters. From the biochemical features, we observed the detection of siderophores, determination of indole-3-acetic acid (IAA), monitoring the ability to dissolve phosphates and antifungal activity. Bacterial suspensions were applied to maize seeds and tested in vivo controlled conditions. Tested isolates were identified as Bacillus flexus, Bacillus megaterium and Bacillus subtilis. All 3 strains achieved the middle – class of phosphate solubilization index (2.00 ≤ SI ˂ 4.00), produced phytohormone IAA and showed positive production of siderophores and inhibited growth of Fusarium culmorum to more than 50%. All differences between tested strains and control strain P. simiae WCS417 were also statistically confirmed. All strains showed positive results in monitoring plant growth promoting properties. The effect of three Bacillus strains on maize seeds in vivo conditions showed significant differences in root length (P<0.0001) and weight of the young plant (P<0.001) compared to control.
Inoculation of Streptomyces to improve oilseed rape (Brassica napus L.) yields and minimise the use of chemical fertilisers is a promising sustainable strategy. In this study, we isolated 72 actinobacterial strains from rhizosphere of oilseed rape and maize and from bulk soil for screening and characterising their antimicrobial activity. Nine promising strains, identified as Streptomyces sp. by morphology, physiological characteristics, and 16S rRNA gene sequencing, were selected for their plant growth-promoting traits and in planta experiments. The actinobacterial strains were positive for IAA production, siderophore production, and HCN production. In planta experiments were conducted by soaking the oilseed rape seeds in the actinobacterial suspension, followed by plant growth under controlled conditions in a cultivate chamber (22–28 °C, 8 h dark/16 h light, constant humidity 80%). We recorded root and shoot length (cm) and seedling fresh weight (g). For most of the abovementioned parameters, a significant enhancement was observed with strain KmiRC20A118 treatment. The length of the root increased by 53.14%, the shoot length increased by 65.6%, and the weight of the fresh plant by 60% compared to the control. The integrated application of PGPS (Plant Growth Promoting Streptomyces) from the rhizosphere of oilseed rape is a promising strategy to improve the growth of oilseed rape.
To explore a genomic pool of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the pandemic, the Ministry of Health of the Slovak Republic formed a genomics surveillance workgroup, and the Public Health Authority of the Slovak Republic launched a systematic national epidemiological surveillance using whole-genome sequencing (WGS). Six out of seven genomic centers implementing Illumina sequencing technology were involved in the national SARS-CoV-2 virus sequencing program. Here we analyze a total of 33,024 SARS-CoV-2 isolates collected from the Slovak population from 1 March 2021, to 31 March 2022, that were sequenced and analyzed in a consistent manner. Overall, 28,005 out of 30,793 successfully sequenced samples met the criteria to be deposited in the global GISAID database. During this period, we identified four variants of concern (VOC)—Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529). In detail, we observed 165 lineages in our dataset, with dominating Alpha, Delta and Omicron in three major consecutive incidence waves. This study aims to describe the results of a routine but high-level SARS-CoV-2 genomic surveillance program. Our study of SARS-CoV-2 genomes in collaboration with the Public Health Authority of the Slovak Republic also helped to inform the public about the epidemiological situation during the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.