Alkannin and shikonin (A/S) are enantiomeric naphthoquinones produced in the roots of certain plants from the Boraginaceae family such as Lithospermum spp. and Alkanna spp. They possess antimicrobial, anti-tumoral and wound healing properties. The production of secondary metabolites by Alkanna tinctoria might be influenced by its endomicrobiome. To study the interaction between this medicinal plant and its bacterial endophytes, we isolated bacteria from the roots of wild growing Alkanna tinctoria collected near to Athens and Thessaloniki in Greece. Representative strains selected by MALDI-TOF mass spectrometry were identified by partial 16S rRNA gene sequence analysis. In total, 197 distinct phylotypes of endophytic bacteria were detected. The most abundant genera recovered were Pseudomonas, Xanthomonas, Variovorax, Bacillus, Inquilinus, Pantoea, and Stenotrophomonas. Several bacteria were then tested in vitro for their plant growth promoting activity and the production of cell-wall degrading enzymes. Strains of Pseudomonas, Pantoea, Bacillus and Inquilinus showed positive plant growth properties whereas those of Bacteroidetes and Rhizobiaceae showed pectinase and cellulase activity in vitro. In addition, bacterial responses to alkannin and shikonin were investigated through resistance assays. Gram negative bacteria were found to be resistant to the antimicrobial properties of A/S, whereas the Gram positives were sensitive. A selection of bacteria was then tested for the ability to induce A/S production in hairy roots culture of A. tinctoria. Four strains belonging to Chitinophaga sp., Allorhizobium sp., Duganella sp., and Micromonospora sp., resulted in significantly more A/S in the hairy roots than the uninoculated control. As these bacteria can produce cell-wall degrading enzymes, we hypothesize that the A/S induction may be related with the plant-bacteria interaction during colonization.
Anchusa officinalis is recognized for its therapeutic properties, which are attributed to the production of different metabolites. This plant interacts with various microorganisms, including the root symbiotic arbuscular mycorrhizal fungi (AMF). Whether these fungi play a role in the metabolism of A. officinalis is unknown. In the present study, two independent experiments, associating A. officinalis with the AMF Rhizophagus irregularis MUCL 41833, were conducted in a semi-hydroponic (S-H) cultivation system. The experiments were intended to investigate the primary and secondary metabolites (PMs and SMs, respectively) content of shoots, roots, and exudates of mycorrhized (M) and non-mycorrhized (NM) plants grown 9 (Exp. 1) or 30 (Exp. 2) days in the S-H cultivation system. Differences in the PMs and SMs were evaluated by an untargeted ultrahigh-performance liquid chromatography high-resolution mass spectrometry metabolomics approach combined with multivariate data analysis. Differences in metabolite production were shown in Exp. 1. Volcano-plots analysis revealed a strong upregulation of 10 PMs and 23 SMs. Conversely, in Exp. 2, no significant differences in PMs and SMs were found in shoots or roots between M and NM plants whereas the coumarin scoparone and the furanocoumarin byakangelicin, accumulated in the exudates of the M plants. In Exp. 1, we noticed an enhanced production of PMs, including organic acids and amino acids, with the potential to act as precursors of other amino acids and as building blocks for the production of macromolecules. Similarly, SMs production was significantly affected in Exp 1. In particular, the phenolic compounds derived from the phenylpropanoid pathway. Fifteen di-, tri-, and tetra-meric C6-C3 derivatives of caffeic acid were induced mainly in the roots of M plants, while four oleanane-types saponins were accumulated in the shoots of M plants. Two new salvianolic acid B derivatives and one new rosmarinic acid derivative, all presenting a common substitution pattern (methylation at C-9”' and C-9' and hydroxylation at C-8), were detected in the roots of M plants. The accumulation of diverse compounds observed in colonized plants suggested that AMF have the potential to affect specific plant biosynthetic pathways.
The purpose of this study was to evaluate the response of estrogen target cells to a series of isoflavone glucosides and aglycones from Genista halacsyi Heldr. The methanolic extract of aerial parts of this plant was processed using fast centrifugal partition chromatography, resulting in isolation of four archetypal isoflavones (genistein, daidzein, isoprunetin, 8-C-β-D-glucopyranosyl-genistein) and ten derivatives thereof. 7-O-β-D-glucopyranosyl-genistein and 7,4΄-di-O-β-D-glucopyranosyl-genistein were among the most abundant constituents of the isolate. All fourteen, except genistein, displayed low binding affinity for estrogen receptors (ER). Models of binding to ERα could account for the low binding affinity of monoglucosides. Genistein and its glucosides displayed full efficacy in inducing alkaline phosphatase (AlkP) in Ishikawa cells, proliferation of MCF-7 cells and ER-dependent gene expression in reporter cells at low concentrations (around 0.3 μM). ICI182,780 fully antagonized these effects. The AlkP-inducing efficacy of the fourteen isoflavonoids was more strongly correlated with their transcriptional efficacy through ERα. O-monoglucosides displayed higher area under the dose-response curve (AUC) of AlkP response relative to the AUC of ERα-transcriptional response compared to the respective aglycones. In addition, 7-O-β-D-glucopyranosyl-genistein and 7,4΄-di-O-β-D-glucopyranosyl-genistein displayed estradiol-like efficacy in promoting differentiation of MC3T3-E1 cells to osteoblasts, while genistein was not convincingly effective in this respect. Moreover, 7,4΄-di-O-β-D-glucopyranosyl-genistein suppressed lipopolysaccharide-induced tumor necrosis factor mRNA expression in RAW 264.7 cells, while 7-O-β-D-glucopyranosyl-genistein was not convincingly effective and genistein was ineffective. However, genistein and its O-glucosides were ineffective in inhibiting differentiation of RAW 264.7 cells to osteoclasts and in protecting glutamate-challenged HT22 hippocampal neurons from oxidative stress-induced cell death. These findings suggest that 7-O-β-D-glucopyranosyl-genistein and 7,4΄-di-O-β-D-glucopyranosyl-genistein display higher estrogen-like and/or anti-inflammatory activity compared to the aglycone. The possibility of using preparations rich in O-β-D-glucopyranosides of genistein to substitute for low-dose estrogen in formulations for menopausal symptoms is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.