BackgroundArsenic is a natural drinking water contaminant affecting 26 million people in West Bengal, India. Chronic arsenic exposure causes cancer, cardiovascular disease, liver disease, neuropathies and ocular diseases. The aims of the present study were to assess bioindicators of hepatocellular injury as indicated by the levels of liver enzymes, to determine the auto immune status, as indicated by the amounts of anti-nuclear antibodies (ANA) and anti-dsDNA antibodies in their serum, and to predict cardiovascular risk in the arsenic exposed population.MethodsEffect of chronic arsenic exposure on liver was determined by liver function tests. Autoimmune status was measured by measuring ANA and anti-dsDNA in serum. Inflammatory cytokines associated with increased cardiovascular disease risk, IL6, IL8 and MCP-1 were determined.ResultsOur results indicated that serum levels of bilirubin, alanine transaminase, aspartate transaminase, alkaline phosphatase and ANA were increased in the arsenic exposed population. Serum levels of IL6 and IL8 also increased in the arsenic exposed group.ConclusionsChronic arsenic exposure causes liver injury, increases the serum levels of autoimmune markers and imparts increased cardiovascular risk.
The influence of temporal and spatial variations on the microbial community composition was assessed in the unique coastal mangrove of Sundarbans using parallel 16S rRNA gene pyrosequencing. The total sediment DNA was extracted and subjected to the 16S rRNA gene pyrosequencing, which resulted in 117 Mbp of data from three experimental stations. The taxonomic analysis of the pyrosequencing data was grouped into 24 different phyla. In general, Proteobacteria were the most dominant phyla with predominance of Deltaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria within the sediments. Besides Proteobacteria, there are a number of sequences affiliated to the following major phyla detected in all three stations in both the sampling seasons: Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Cyanobacteria, Nitrospira, and Firmicutes. Further taxonomic analysis revealed abundance of micro-aerophilic and anaerobic microbial population in the surface layers, suggesting anaerobic nature of the sediments in Sundarbans. The results of this study add valuable information about the composition of microbial communities in Sundarbans mangrove and shed light on possible transformations promoted by bacterial communities in the sediments.
Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani). The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I) within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS) revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp) with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea) compared to station (Dhulibhashani) with nearly pristine environment (dominated by methanogens). It is indicated that sediment archaeal community patterns were influenced by environmental conditions.
BackgroundDarjeeling tea, a most popular variety of black tea, though consumed by the people in different parts of world but its beneficial health effects have not been investigated in details. In this study, the antimutagenic and anticancer effect of Darjeeling tea extract (DTE) has been evaluated.MethodsAntimutagenic activity of the DTE was carried out in two different strains of Salmonella typhimurium by AMES test against a known mutagen benzo[a]pyrene (B[a]P) with S9 activation. Moreover, anticlastogenic property of DTE was also measured by micronuclei formation (MN) against B[a]P with S9 activation in human lymphocytes. The anticancer activity of the same was studied on U937 cell line. Here, Human PBMCs were used as the normal cell control to identify selective anticancer activity of the extract against U937 cells.ResultsThe results showed significant antimutagenic activity on bacterial strains. A significant decrease in MN was also observed in the DTE treated human lymphocyte cultures pretreated with B[a]P when compared with B[a]P treated cultures alone. The study clearly exhibited anticancer activity of the extract on U937 cell line. Further studies also revealed that apoptosis induction is an important mechanism behind the anticancer effect of DTE.ConclusionOverall, this study indicates that DTE has significant antimutagenic and anticancer activities on bacterial and mammalian cells respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.