Objective: The emergence of distraction-based growing rods has provided the means to reduce the progression of spinal deformity in early onset scoliosis (EOS). The current protocols for evaluating spinal implants (ie, ASTM-F1717 and ISO-12189) were developed for fusion/ dynamic devices. These protocols do not feature long unsupported rod lengths subjected to distraction. Due to the unsuitability of the existing guidelines for the evaluation of growing rods, a new distraction-based finite element protocol is presented herein for the first time. Method: A vertebrectomy (VO) model from current protocols was modified to accommodate multi-spinal segments (ie, MS model) in which springs with appropriate stiffness were simulated in between the plastic blocks. To assess the efficacy of the protocol, two different computational studies were conducted: (a) compression-bending (MS-CB) with no distraction, and (b) distraction followed by compression-bending (MS-D + CB). In each study, the model with no axial connector (rods-only) was modified to include a) 80-mm long tandem (LT) connectors, and b) side-by-side (SBS) connectors. Stiffness and yield loads were calculated as per ASTM-F1717 guidelines and compared with the corresponding VO models with no distraction. In the MS-D + CB models, distraction was applied at the top block, stretching the spring-block construct in a simulation of scoliosis surgery prior to locking the construct at the connector-rods' interface. Results: MS-CB models predicted higher stiffness and yield loads, compared to the VO models. The locking mechanism produced pre-existing stresses on the rod-connector interface, which caused a shift in the location of high-stress regions to the distraction site. Distraction led to a decrease in the construct's stiffness and yield load. Discussion: The proposed protocol enables the simulation of clinical parameters that are not feasible in the F1717 models and predicted stress patterns in the hardware consistent with observed clinical failures.
Purpose
Multi-rod constructs are used commonly to stabilize pedicle subtraction osteotomies (PSO). This study aimed to evaluate biomechanical properties of different satellite rod configurations and effects of screw-type spanning a PSO.
Methods
A validated 3D spinopelvic finite element model with a L3 PSO (30°) was used to evaluate 5 models: (1) Control (T10–pelvis + 2 rods); (2) lateral satellite rods connected via offsets to monoaxial screws (LatSat-Mono) or (3) polyaxial screws (LatSat-Poly); (4) in-line satellite rods connected to monoaxial screws (InSat-Mono) or (4) polyaxial screws (InSat-Poly). Global and PSO range of motions (ROM) were recorded. Rods’ von Mises stresses and PSO forces were recorded and the percent differences from Control were calculated.
Results
All satellite rods (save InSat-Mono) increased PSO ROM and decreased primary rods’ von Mises stresses at the PSO. Lateral rods increased PSO forces (LatSat-Mono:347.1 N; LatSat-Poly:348.6 N; Control:336 N) and had relatively lower stresses, while in-line rods decreased PSO forces (InSat-Mono:280.1 N; InSat-Poly:330.7 N) and had relatively higher stresses. Relative to polyaxial screws, monoaxial screws further decreased PSO ROM, increased satellite rods’ stresses, and decreased PSO forces for in-line rods, but did not change PSO forces for lateral rods.
Conclusion
Multi-rod constructs using in-line and lateral satellite rods across a PSO reduced primary rods' stresses. Subtle differences in biomechanics suggest lateral satellite rods, irrespective of screw type, increase PSO forces and lower rod stresses compared to in-line satellite rods, which had a high degree of posterior instrumentation stress shielding and lower PSO forces. Clinical studies are warranted to determine if these findings influence clinical outcomes.
Study Design Finite element (FE) study. Objective Pedicle subtraction osteotomy (PSO) is a surgical method to correct sagittal plane deformities. In this study, we aimed to investigate the biomechanical effects of lumbar disc degeneration on the instrumentation following PSO and assess the effects of using interbody spacers adjacent to the PSO level in a long instrumented spinal construct. Methods A spinopelvic model (T10-pelvis) with PSO at the L3 level was used to generate 3 different simplified grades of degenerated lumbar discs (mild (Pfirrmann grade III), moderate (Pfirrmann grade IV), and severe (Pfirrmann grade V)). Instrumentation included eighteen pedicle screws and bilateral primary rods. To investigate the effect of interbody spacers, the model with normal disc height was modified to accommodate 2 interbody spacers adjacent to the PSO level through a lateral approach. For the models, the rods’ stress distribution, PSO site force values, and the spine range of motion (ROM) were recorded. Results The mildly, moderately, and severely degenerated models indicated approximately 10%, 26%, and 40% decrease in flexion/extension motion, respectively. Supplementing the instrumented spinopelvic PSO model using interbody spacers reduced the ROM by 22%, 21%, 4%, and 11% in flexion, extension, lateral bending, and axial rotation, respectively. The FE results illustrated lower von Mises stress on the rods and higher forces at the PSO site at higher degeneration grades and while using the interbody spacers. Conclusions Larger and less degenerated discs adjacent to the PSO site may warrant consideration for interbody cage instrumentation to decrease the risk of rod fracture and PSO site non-union.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.