Application of automated fiber placement is limited by defects formed in the prepreg tows during the layup process. An extensive experimental study is performed to investigate the effect of compaction roller on the quality of the layup. Five different compaction rollers with different stiffness and architectures were manufactured and employed to dispense prepreg tows at various process conditions. Layup quality was examined and different defects including tow buckling and blister were identified. In addition to automated fiber placement trials, static testing and finite element simulations were performed to probe the pressure distribution and contact width of each roller. This data was used to support and understand the results of the automated fiber placement trials. Results indicate the solid elastomer rollers that are compliant enough to produce the same level of contact width under similar levels of compaction forces are superior to the perforated rollers in terms of achievable layup quality.
Since holes comprise the necessary features of many structural components, a comprehensive understanding of the behavior of composite plates containing an open hole is a crucial step in their design process. In the present manuscript, an extensive numerical study has been conducted in order to investigate the effects of material nonlinearity on the stress distribution and stress concentration factors in unidirectional and laminated composite materials. To attain this objective, various models with different configurations were studied. In unidirectional composites, the maximum deviation of stress distribution around the hole (from the linear solution) happens in 45° lamina in which includes a high level of shear stress. However, the maximum difference in the stress concentration factor occurs in 15° lamina and is 15.1% at the onset of failure. In composite laminates, the maximum deviation of nonlinear stress concentration factor from the linear solution is reported 24.3% and it occurs in [+45/−45] s laminate. In the last section, Neuber’s rule is employed to find the stress concentration factors of the laminated composites, with a reasonable accuracy.
Rollers and wheels are widely used in industry and transportation, but there is seldom direct information about contact forces. A smart roller is introduced which provides real‐time pressure measurements from a soft, elastomer‐coated cylinder. The roller is designed for automated fiber placement (AFP) machines, which are widely used in the aerospace industry to manufacture complex composite parts. For optimum process performance, real‐time feedback is highly desirable for detecting flaws during manufacturing. The sensor replaces the elastomer outer layer of a standard roller with 4 by 13 tactile pixels (taxels) of soft capacitive sensors, which provide more than 1 pF of change in capacitance per taxel over a pressure range of 1 MPa. Sensors are made of silicone and mounted on a flexible printed circuit board on which a microcontroller with Bluetooth‐Low‐Energy collects and transmits capacitance data. The sensor dielectric layer is composed of pillars that increase layer compliance and sensitivity while also providing the stiffness of typical industrial rollers. The ability of the roller to measure real‐time local compaction pressure at typical manufacturing speeds enables the monitoring of spatially‐resolved pressure‐time curves, which can be used to predict and control adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.