BackgroundPolysaccharide monooxygenases (PMOs) of the auxiliary activity 9 (AA9) family have been reported to oxidize C1, C4, and C6 positions in cellulose. However, currently no direct evidence exists that PMOs oxidize C6 positions in cellulose, and molecular mechanism of C1, C4 and C6 oxidation is unclear.ResultsIn this study, a PMO gene (Ctpmo1) belonging to AA9 was isolated from Chaetomium thermophilum and successfully expressed and correctly processed in Pichia pastoris. A simple and effective chemical method of using Br2 to oxidize CtPMO1 reaction products was developed to directly identify C4- and C6-oxidized products by matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF–MS). The PMO (CtPMO1) cleaves phosphoric acid-swollen cellulose (PASC) and celloheptaose, resulting in the formation of oxidized and nonoxidized oligosaccharides. Product identification shows that the enzyme can oxidize C1, C4, and C6 in PASC and cello-oligosaccharides. Mutagenesis of the aromatic residues Tyr27, His64, His157 and residue Tyr206 on the flat surface of CtPMO1 was carried out using site-directed mutagenesis to form the mutated enzymes Y27A, H64A, H157A, and Y206A. It was demonstrated that Y27A retained complete activity of C1, C4, and C6 oxidation on cellulose; Y206A retained partial activity of C1 and C4 oxidation but completely lost activity of C6 oxidation on cellulose; H64A almost completely lost activity of C1, C4, and C6 oxidation on cellulose; and H157A completely lost activity of C1, C4, and C6 oxidation on cellulose.ConclusionsThis finding provides direct and molecular evidence for C1, C4, especially C6 oxidation by lytic polysaccharide monooxygenase. CtPMO1 oxidizes not only C1 and C4 but also C6 positions in cellulose. The aromatic acid residues His64, His157 and residue Tyr206 on CtPMO1 flat surface are involved in activity of C1, C4, C6 oxidation.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1156-2) contains supplementary material, which is available to authorized users.
Chilling has a critical role in the growth and development of perennial plants. The chilling requirement (CR) for dormancy breaking largely depends on the species. However, global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants. Here, we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions. We determined the minimum CR (570 chill units, CU) needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds (FBs, anther and ovary differentiation completed) with different CRs. The concentrations of ABA and GA3 in the FBs were also determined using HPLC. The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS T (FT) homologs at the transcript level in FBs when the accumulated CR reached 570 CU (IB570) compared to FBs in November (FB.Nov, CK) and nF16 (non-flowering FBs after treatment at 16 °C for −300 CU), which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module. Overexpression in Arabidopsis was used to confirm the function of candidate genes, and early flowering was induced in 35S::CpFT1 transgenic lines. Our data provide insight into the minimum CR (570 CU) needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C. praecox, which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.
Objectives: To describe health-related quality of life (HRQoL), sex differences in HRQoL, and factors affecting the HRQoL of elderly people living alone in urban areas of Shaanxi Province, China. Methods: A cohort was obtained using multistage stratified cluster random sampling. We collected cross-sectional data using surveys. HRQoL was measured using the 36-item Short Form Health Survey. Multivariable multilevel linear regression analysis was used to examine factors associated with mental and physical health component summary scores. Results: Overall, 442 elderly Chinese individuals who lived alone completed the survey (mean age 73 years, women: 59%). Women were more likely to report better mental health than men. Factors significantly associated with reduced mental health scores were older age, having never been married or being divorced, and having a history of cancer, urinary tract disease, fractures or gastrointestinal disorders. Factors associated with physical health were having never been married or being divorced and having hypertension.
BackgroundThe study on the second generation bio-fuel is a hot area of current research of renewable energy. Among series of key points in this area, the role of β-glucosidase in the degradation of intermediate gluco-oligosaccharides limits the rate of the complete saccharification of lignocellulose.ResultsIn this study, a new β-glucosidase gene, unglu135B12, which was isolated from a metagenomic library of rumen of cattle feeding with Miscanthus sinensis by the function-based screening, encodes a 779 amino acid polypeptide that contains a catalytic domain belonging to glycoside hydrolase family 3 (GH3). It was recombinantly expressed, purified and biochemically characterized. The recombinant β-glucosidase, unglu135B12, displayed optimum enzymatic activity at pH 5.0 at 38°C, and showed the highest specific activity of 2.5 × 103 U/mg under this optimal condition to p-nitrophenyl-β-D-glucopyranoside (pNPG), and its Km and Vmax values were 0.309 mmol/L and 7.292 μmol/min, respectively. In addition, the presence of Ca2+, K+, Na+ slightly improved β-glucosidase activity of unglu135B12 by about 5%, while about 10 ~ 85% loss of β-glucosidase activity was induced by addition of Mn2+, Fe3+, Zn2+, Cu2+. Interestingly, unglu135B12 was activated by glucose at the concentration lower than 40 mM.ConclusionsOur findings indicate that unglu135B12 is a new β-glucosidase derived from rumen of cattle, and it might be a potent candidate for saccharification of lignocellulose in industrial application.Electronic supplementary materialThe online version of this article (doi:10.1186/1472-6750-14-85) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.