BackgroundThe accumulation of advanced glycation end products (AGEs) in body tissue has been implicated in the progression of age-related diseases. Inhibition of AGE formation is the imperative approach for alleviating diabetic complications. Clitoria ternatea extract (CTE) has been demonstrated to possess anti-diabetic activity. However, there is no scientific evidence supporting its anti-glycation activity. The objective of this study was to determine the inhibitory effect of CTE on fructose-induced formation of AGEs and protein oxidation. Antioxidant activity of CTE was also assessed by various methods.MethodsThe aqueous extract of CTE (0.25-1.00 mg/ml) was measured for the content of total phenolic compounds, flavonoid, and anthocyanin by Folin-Ciocalteu assay, AlCl3 colorimetric method, and pH differential method, respectively. The various concentrations of CTE were incubated with BSA and fructose at 37°C for 28 days. The formation of fluorescent AGEs, the level of fructosamine, protein carbonyl content, and thiol group were measured. The in vitro antioxidant activity was measured by the 1,1-diphenyl 2-picrylhydrazyl (DPPH) scavenging activity, trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), hydroxyl radical scavenging activity (HRSA), superoxide radical scavenging activity (SRSA), and ferrous ion chelating power (FICP).ResultsThe results demonstrated that the content of total phenolics, flavonoids and total anthocyanins in CTE was 53 ± 0.34 mg gallic acid equivalents/g dried extract, 11.2 ± 0.33 mg catechin equivalents/g dried extract, and 1.46 ± 0.04 mg cyanidin-3-glucoside equivalents/g dried extract, respectively. Moreover, CTE (0.25-1.00 mg/ml) significantly inhibited the formation of AGEs in a concentration-dependent manner. CTE also markedly reduced the levels of fructosamine and the oxidation of protein by decreasing protein carbonyl content and preventing free thiol depletion. In the DPPH radical scavenging activity and SRSA, CTE had the IC50 values of 0.47 ± 0.01 mg/ml and 0.58 ± 0.04 mg/ml. Furthermore, the FRAP and TEAC values of CTE were 0.38 ± 0.01 mmol FeSO4 equivalents/mg dried extract and 0.17 ± 0.01 mg trolox equivalents/mg dried extract. However, CTE showed weak scavenging activity on hydroxyl radical and a weak antioxidant iron chelator.ConclusionsThe results showed that CTE has strong antiglycation and antioxidant properties and might have therapeutic potentials in the prevention of AGE-mediated diabetic complications.
Clitoria ternatea (commonly known as blue pea) flower petal extract (CTE) is used as a natural colorant in a variety of foods and beverages. The objective of study was to determine the inhibitory effect of CTE on adipogenesis in 3T3-L1 preadipocytes. The phytochemical profiles of CTE were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Anti-adipogenesis effect of CTE was measured by using Oil Red O staining, intracellular triglyceride assay, quantitative real-time PCR and western blot analysis in 3T3-L1 adipocytes. Cell cycle studies were performed by flow cytometry. Lipolysis experiments were performed using a colorimetric assay kit. In early stages, CTE demonstrated anti-adipogenic effects through inhibition of proliferation and cell cycle retardation by suppressing expression of phospho-Akt and phospho-ERK1/2 signaling pathway. The results also showed that CTE inhibited the late stage of differentiation through diminishing expression of adipogenic transcription factors including PPARγ and C/EBPα. The inhibitory action was subsequently attenuated in downregulation of fatty acid synthase and acetyl-CoA carboxylase, causing the reduction of TG accumulation. In addition, CTE also enhanced catecholamine-induced lipolysis in adipocytes. These results suggest that CTE effectively attenuates adipogenesis by controlling cell cycle progression and downregulating adipogenic gene expression.
Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Escherichia coli (E. coli), increasingly identified in small animals, indicates a crisis of an antimicrobial resistance situation in veterinary medicine and public health. This study aimed to characterise the genetic features of ESC-resistant E. coli isolated from cats and dogs with urinary tract infections in Thailand. Of 72 ESC-resistant E. coli isolated from diagnostic samples (2016–2018), blaCTX-M including group 1 (CTX-M-55, -15 and -173) and group 9 (CTX-M-14, -27, -65 and -90) variants were detected in 47 isolates (65.28%) using PCR and DNA sequencing. Additional antimicrobial resistance genes, including plasmid-mediated AmpC (CIT and DHA), blaNDM-5, mcr-3, mph(A) and aac(6′)-Ib-cr, were detected in these isolates. Using a broth microdilution assay, all the strains exhibited multidrug-resistant phenotypes. The phylogroups were F (36.11%), A (20.83%), B1 (19.44%), B2 (19.44%) and D (4.17%), with several virulence genes, plasmid replicons and an integrase gene. The DNA fingerprinting using a repetitive extragenic palindromic sequence-PCR presented clonal relationships within phylogroups. Multiple human-associated, high-risk ExPEC clones associated with multidrug resistance, including sequence type (ST) 38, ST131, ST224, ST167, ST354, ST410, ST617 and ST648, were identified, suggesting clonal dissemination. Dogs and cats are a potential reservoir of ESC-resistant E. coli and significant antimicrobial resistance genes.
The aim of this study was to present molecular and antimicrobial resistance characteristics of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 isolated from diseased dogs and cats in Thailand. A total of 20 MRSA isolates of 134 Staphylococcus aureus isolated from canine and feline clinical samples during 2017–2020 were CC398, consisting of sequence type (ST) 398 (18 isolates), ST5926 (1 isolate), and ST6563 (1 isolate) by multilocus sequence typing. spa t034 and staphylococcal cassette chromosome mec (SCCmec) V were predominantly associated with ST398. Intraclonal differentiation was present by additional spa (t1255, t4653), non-detectable spa, composite SCCmec with a hybrid of ccrA1B1+ccrC and class A mec complex, and DNA fingerprints by pulsed-field gel electrophoresis. The isolates essentially carried antimicrobial resistance genes, mediating multiple resistance to β-lactams (mecA, blaZ), tetracyclines [tet(M)], aminoglycosides [aac(6′)-Ie-aph(2′)-Ia], and trimethoprim (dfr). Livestock-associated MRSA ST398 resistance genes including lnu(B), lsa(E), spw, fexA, and tet(L) were heterogeneously found and lost in subpopulation, with the absence or presence of additional erm(A), erm(B), and ileS2 genes that corresponded to resistance phenotypes. As only a single CC398 was detected with the presence of intraclonal variation, CC398 seems to be the successful MRSA clone colonizing in small animals as a pet-associated MRSA in Thailand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.