Performance of a pilot scale Hybrid Vertical Anaerobic Biofilm (HyVAB) reactor treating petrochemical refinery wastewater is presented here. The reactor is an integration of a bottom anaerobic sludge bed and a top aerobic biofilm stage and was operated continuously for 92 days at 21 ± 2 °C. Wastewater was fed continuously to the reactor with step flow increases reducing hydraulic retention time from 55 to 12 hours, increasing organic loading rate from 3 to 33 kg-COD/m3·d. The HyVAB removed on average 91% and 86% of the soluble and total feed COD, respectively, at steady state and loads up to 23 kg-COD/m3·d, of which 98% of the soluble COD removal occurred in the anaerobic stage. Methane yield ranged from 0.29 to 0.51 L/g-COD removed, including conversion of settled aerobic sludge to methane. Sludge production was low (0.04 kg-VSS/kg-COD removed) and biogas methane content high (84 ± 2%). The results demonstrated that HyVAB is an efficient, low footprint alternative for high strength wastewater treatment.
Petrochemical wastewater is inherent to oil industries. The wastewater contains various organic and inorganic components that need to be well managed before they can be discharged to any receiving waters. The complexity of the wastewater and stringent discharge limit push the development of wastewater treatment by combinations of different methods. Biological wastewater treatments that have been well developed for organic and inorganic wastewater treatment are thus a potential method for petrochemical wastewater management. This chapter summarizes the commonly applied petrochemical wastewater pretreatment methods prior biological treatments and compares different biological treatment systems' performance such as biological anaerobic, aerobic and integrated systems. Two case studies are presented for a high chemical oxygen demand (COD) contents petrochemical wastewater treatment in full-scale by applying Biowater Technology's biofilm system continuous flow intermittent cleaning (CFIC) and a pilotscale study by an integrated anaerobic and aerobic biofilm system hybrid vertical anaerobic biofilm (HyVAB). Both processes showed substantial (over 90%) COD removal, while the HyVAB system produced high methane content biogas that can be potentially used as an energy source. Studies of degradation of certain toxic chemicals, such as aromatic compounds in petrochemical wastewater, by the advanced treatment systems incorporating specific organisms can be of good research interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.