Crystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.
Copper oxide nanoparticles were prepared by electrochemical reduction method which is environmental benign. Tetra ethyl ammonium bromide (TEAB), tetra propyl ammonium bromide (TPAB), tetra butyl ammonium bromide (TBAB) were used as stabilizing agent in an organic medium viz. tetra hydro furan (THF) and acetonitrile (ACN) in 4:1 ratio by optimizing current density. The reduction process takes place under atmospheric condition over a period of 2 h. Such nanoparticles were prepared using simple electrolysis cell in which the sacrificial anode was a commercially available copper metal sheet and platinum (inert) sheet acted as a cathode. The stabilizers were used to control the size of a nanoparticles. The synthesized copper oxide nanoparticles were characterized by using UV-Visible, FT-IR, XRD, SEM-EDS and TEM analysis techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.