Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT--an anti-CD20 antibody) and Cetuximab (C225--anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.
Resistive switching (RS)‐based random access memory has been envisaged as a viable alternative to existing memory technology due to its nonvolatility, high switching speed, high endurance/retention, and considerably low operating voltage. Herein, a new uniform, repetitive, and stable RS phenomenon is demonstrated based on very low‐cost two‐terminal metal–insulator–metal stack fabricated using a highly redox‐active vanadium‐based polyoxometalate (POM) molecular clusters, [V10O28]6−—belonging to polyoxovanadate (POV) family. The RS is observed to be unipolar and nonvolatile in nature, and occur at a fairly low operating bias voltage (less than 2 V), making it suitable for low‐power operations. The switching event is attributed to the cycling between formation and rupture of tiny conductive nanofilaments formed due to trapping and detrapping of positively charged ionized oxygen vacancy sites present in the active switching layer of [V10O28]6−. POMs, in their rich abundance, are highly stable early transition‐metal oxide nanosized clusters, capable of storing as well as releasing a large number of electrons. In addition, they can undergo fast and reversible redox reactions (both in solid and liquid electrolyte media) in “stepwise” manner—a property that makes them a promising candidate for ultrafast and multi‐level nonvolatile molecular memory for high‐density data storage. Preliminary investigations on the POV‐based memory cells result in device resistance ratio ≈25, endurance for more than 200 cycles, and stable retention time around 2200 s, in fully open air condition.
A new electrochemical hybridization transduction pathway, obtained by coupling electrochemical adsorption and long‐range electron transfer through double‐stranded DNA, was investigated using ultramicroelectrode (UME). The results show that long‐range electron transfer does not occurs exclusively throws well‐packed and organized self‐assembled DNA monolayers. This approach is used to investigate long‐range electron transfer properties of both single‐ and double‐ stranded short synthetic DNA and DNA plasmids. Single mismatch electrochemical detection protocol of non‐labelled short synthetic DNA, without heating or probe labelling, in a 10 minutes protocol, was in fine performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.