IntroductionInterleukin 1 beta (IL- 1β), a key proinflammatory cytokine encoded by the interleukin 1 beta gene, has been associated with chronic inflammation and plays an important role in lung inflammatory diseases including lung cancer. Elevated levels of Interleukin 1proteins, in particular interleukin 1 beta greatly enhance the intensity of the inflammatory response.AimTo study the role of interleukin 1 beta-31C > T and -511 T > C polymorphism in the pathogenesis of non small cell lung cancer (NSCLC).Materials and methodsOne hundred and ninety non small cell lung cancer patients and 200 healthy age, sex, smoking and dwelling matched controls were used for polymorphic analysis by polymerase chain reaction—restriction fragment length polymorphism (PCR-RFLP) followed by sequencing. Normal tissues of 48 histopathologically confirmed non small cell lung cancer patients were taken for mRNA expression analysis. Quantitation of interleukin 1 beta was carried out by quantitative real time PCR.ResultThe T/T genotype of interleukin 1 beta-31 gene was significantly associated with increased risk of NSCLC [(P = 0.001, OR – 2.8 (95%CI 1.52–5.26)]. The interleukin 1 beta − 511 T > C does not show any difference between the NSCLC and control group (P = 0.3, OR – 0.72 (95%CI 0.41–1.28). Quantitative analysis of mRNA showed significant association with interleukin 1 beta T allele as compared to the interleukin 1 beta-31C allele (P = 0.006).ConclusionWe conclude that lung cancer risk genotype interleukin 1 beta-31TT results in increased expression of interleukin 1 beta mRNA in lung cancer patients. Our data suggest that this genotype (IL1β -31TT) in the interleukin 1 beta regulatory region provide a microenvironment with elevated inflammatory stimuli and thus increasing the risk for lung cancer.
Goats (n = 12) undergoing laparoscopy assisted embryo transfer were randomly allotted to two groups (I and II) and injected same volume of ropivacaine hydrochloride at 1.0 mg/kg and 0.5 mg/kg body weight, respectively, at the lumbosacral epidural space. The hind quarters of all the animals were lifted up for the first 3.0 minutes following injection. Immediately after induction the animals were restrained in dorsal recumbency in Trendelenburg position in a cradle. Laparoscopy was performed after achieving pneumoperitoneum using filtered room air. Regional analgesia and changes in physiological parameters were recorded. The mean induction time in animals of group I (n = 6) was 12.666 ± 1.994 minutes. In these animals the analgesia extended up to the umbilical region and lasted for 60 minutes. Only two animals in group II were satisfactorily induced in 11.333 ± 2.333 minutes. In animals of group I, the time taken for regaining the full motor power was significantly long (405 ± 46.314 min) when compared to group II goats (95 ± 9.219 min). From this study it was concluded that ropivacaine did not produce adequate analgesia in most of the goats at 0.5 mg/kg. When used at 1.0 mg/kg, it produced satisfactory regional analgesia lasting for one hour but the prolonged motor loss precludes its use. Additional studies using ropivacaine hydrochloride at doses in between the two extremes used here may be undertaken before recommending it for lumbosacral anaesthesia in goats undergoing laparoscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.