Neurofeedback (NF) is a research and clinical technique, characterized by live demonstration of brain activation to the subject. The technique has become increasingly popular as a tool for the training of brain self-regulation, fueled by the superiority in spatial resolution and fidelity brought along with real-time analysis of fMRI (functional magnetic resonance imaging) data, compared to the more traditional EEG (electroencephalography) approach. NF learning is a complex phenomenon and a controversial discussion on its feasibility and mechanisms has arisen in the literature. Critical aspects of the design of fMRI-NF studies include the localization of neural targets, cognitive and operant aspects of the training procedure, personalization of training, and the definition of training success, both through neural effects and (for studies with therapeutic aims) through clinical effects. In this paper, we argue that a developmental perspective should inform neural target selection particularly for pediatric populations, and different success metrics may allow in-depth analysis of NF learning. The relevance of the functional neuroanatomy of NF learning for brain target selection is discussed. Furthermore, we address controversial topics such as the role of strategy instructions, sometimes given to subjects in order to facilitate learning, and the timing of feedback. Discussion of these topics opens sight on problems that require further conceptual and empirical work, in order to improve the impact that fMRI-NF could have on basic and applied research in future.
Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF). Particularly for stress management, targeting deeply located limbic areas involved in stress processing has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and costeffectiveness) of the approach, particularly for clinical purposes. The current study aimed to overcome the limited applicability of rt-fMRI by using an electroencephalography (EEG) model endowed with improved spatial resolution, derived from simultaneous EEG-fMRI, to target amygdala activity (termed amygdala electrical fingerprint (Amyg-EFP). Healthy individuals (n = 180) undergoing a stressful military training programme were randomly assigned to six Amyg-EFP-NF sessions or one of two controls (control-EEG-NF or NoNF), taking place at the military training base. The training results demonstrated specificity of NF learning to the targeted Amyg-EFP signal, which led to reduced alexithymia and faster emotional Stroop indicating better stress coping following Amyg-EFP-NF relative to controls. Neural target engagement was demonstrated in a follow-up fMRI-NF, showing greater amygdala blood-oxygen-level-dependent activity downregulation and amygdala-ventromedial prefrontal cortex functional connectivity following Amyg-EFP-NF relative to NoNF. Together, these results demonstrate limbic specificity and efficacy of Amyg-EFP-NF during a stressful period, pointing to a scalable nonpharmacological yet neuroscience-based training to prevent stress-induced psychopathology.
Sleep deprivation has been shown recently to alter emotional processing possibly associated with reduced frontal regulation. Such impairments can ultimately fail adaptive attempts to regulate emotional processing (also known as cognitive control of emotion), although this hypothesis has not been examined directly. Therefore, we explored the influence of sleep deprivation on the human brain using two different cognitive-emotional tasks, recorded using fMRI and EEG. Both tasks involved irrelevant emotional and neutral distractors presented during a competing cognitive challenge, thus creating a continuous demand for regulating emotional processing. Results reveal that, although participants showed enhanced limbic and electrophysiological reactions to emotional distractors regardless of their sleep state, they were specifically unable to ignore neutral distracting information after sleep deprivation. As a consequence, sleep deprivation resulted in similar processing of neutral and negative distractors, thus disabling accurate emotional discrimination. As expected, these findings were further associated with a decrease in prefrontal connectivity patterns in both EEG and fMRI signals, reflecting a profound decline in cognitive control of emotion. Notably, such a decline was associated with lower REM sleep amounts, supporting a role for REM sleep in overnight emotional processing. Altogether, our findings suggest that losing sleep alters emotional reactivity by lowering the threshold for emotional activation, leading to a maladaptive loss of emotional neutrality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.