Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO/SrTiO interface 2DEG at the nanoscale. In particular, SrTiO domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO twin boundary and detect a change in LaAlO/SrTiO interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO-based devices on the nanoscale.
Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique.
Oxide interfaces, including the LaAlO3/SrTiO3 interface, have been a subject of intense interest for over a decade due to their rich physics and potential as low-dimensional nanoelectronic systems. The field has reached the stage where efforts are invested in developing devices. It is critical now to understand the functionalities and limitations of such devices. Recent scanning probe measurements of the LaAlO3/SrTiO3 interface have revealed locally enhanced current flow and accumulation of charge along channels related to SrTiO3 structural domains. These observations raised a key question regarding the role these modulations play in the macroscopic properties of devices. Here we show that the microscopic picture, mapped by scanning superconducting quantum interference device, accounts for a substantial part of the macroscopically measured transport anisotropy. We compared local flux data with transport values, measured simultaneously, over various SrTiO3 domain configurations. We show a clear relation between maps of local current density over specific domain configurations and the measured anisotropy for the same device. The domains divert the direction of current flow, resulting in a direction-dependent resistance. We also show that the modulation can be significant and that in some cases up to 95% of the current is modulated over the channels. The orientation and distribution of the SrTiO3 structural domains change between different cooldowns of the same device or when electric fields are applied, affecting the device behavior. Our results, highlight the importance of substrate physics, and in particular, the role of structural domains, in controlling electronic properties of LaAlO3/SrTiO3 devices. Furthermore, these results point to new research directions, exploiting the STO domains’ ability to divert or even carry current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.