Disease is an increasing threat for marine bivalves worldwide. Recently, a mass mortality event (MME) impacting the bivalve
Pinna nobilis
was detected across a wide geographical area of the Spanish Mediterranean Sea and linked to a haplosporidian parasite. In 2017–2018, mass mortality events affecting the pen shell
Pinna nobilis
were recorded in two different regions of Italy, Campania and Sicily, in the Tyrrhenian Sea (Mediterranean Sea). Histopathological and molecular examinations of specimens showed the presence of
Haplosporidium
sp. in only one specimen in one area. Conversely, in all of the surveyed moribund animals, strong inflammatory lesions at the level of connective tissue surrounding the digestive system and gonads and linked to the presence of intracellular Zhiel-Neelsen-positive bacteria were observed. Molecular analysis of all of the diseased specimens (13) confirmed the presence of a
Mycobacterium
. Blast analysis of the sequences from all of the areas revealed that they were grouped together with the human mycobacterium
M. sherrisii
close to the group including
M. shigaense
,
M. lentiflavum
and
M. simiae
. Based on pathological and molecular findings, it is proposed that a mycobacterial disease is associated with the mortality episodes of
Pinna nobilis
, indicating that, at this time,
Haplosporidium
sp. is not responsible for these events in Campanian and Sicilian waters.
Summary
Infectious agents such as the bacteria Vibrio aestuarianus or Ostreid herpesvirus 1 have been repeatedly associated with dramatic disease outbreaks of Crassostrea gigas beds in Europe. Beside roles played by these pathogens, microbial infections in C. gigas may derive from the contribution of a larger number of microorganisms than previously thought, according to an emerging view supporting the polymicrobial nature of bivalve diseases. In this study, the microbial communities associated with a large number of C. gigas samples collected during recurrent mortality episodes at different European sites were investigated by real‐time PCR and 16SrRNA gene‐based microbial profiling. A new target enrichment next‐generation sequencing protocol for selective capturing of 884 phylogenetic and virulence markers of the potential microbial pathogenic community in oyster tissue was developed allowing high taxonomic resolution analysis of the bivalve pathobiota. Comparative analysis of contrasting C. gigas samples conducted using these methods revealed that oyster experiencing mortality outbreaks displayed signs of microbiota disruption associated with the presence of previously undetected potential pathogenic microbial species mostly belonging to genus Vibrio and Arcobacter. The role of these species and their consortia should be targeted by future studies aiming to shed light on mechanisms underlying polymicrobial infections in C. gigas.
Since the first description of Marteilia refringens (Paramyxea) in flat oysters Ostrea edulis in 1968 in the Aber Wrach, Brittany (France), the life-cycle of this parasite has remained unknown. However, recent studies, conducted in the 'claire' system, have proposed the planktonic copepod Acartia grani as a potential intermediate host for the parasite. Nevertheless, experimental transmission of the parasite through the copepod has failed. Recent studies in this field have reported the presence of the parasite in zooplankton from the bays of the Delta de l'Ebre, a more complex and natural estuarine environment than that of the claire. As a result, 2 new Marteilia host species were proposed: the copepods Oithona sp. (Cyclopoida) and an indeterminate Harpaticoida. Consequently, the objective of the present work was to study the dynamics of Marteilia in the zooplankton community from one of the bays, Alfacs Bay, as well as the dynamics of the parasite in cultivated mussels during 1 complete year. Six different zooplankton taxa appeared to be parasitized by M. refringens, including copepods (3 Calanoida, Acartia discaudata, A. clausi and A. italica; 1 Cyclopoida, Oithona sp.; and 1 Harpacticoida, Euterpina acutifrons), and larval stages of decapod crustaceans (zoea larvae of Brachyura, probably Portumnus sp.). These taxa are thus proposed as new subjects for study, since they could be intermediate hosts in the infection process of mussels by Marteilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.