Smoking cigarettes is one of the most concerning issues that leads to tobacco-related cancers and can even result in death. Therefore, these issues should be addressed with a great sense of urgency with low-cost and simple approaches. Over the past several years, the scientific community has attempted to find solutions to overcome this issue. Thus, a large number of excellent studies have been reported in this field, and summarizing these results and providing important roadmaps for future studies is currently of great importance. Finding an outstanding solution to address aforementioned issue would be of great value to the community and to the social. Tobacco contains thousands of chemicals, and sixty-nine compounds have been established as human carcinogens; specifically, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the strongest carcinogen among the tobacco-specific nitrosamines. Tobacco carcinogens are also linked to mammary gland pathogenesis and increased risk of developing many cancers, including breast cancer, the most common cancer in women worldwide. This mini-review summarizes the role of NNK and the mechanisms of its receptor, nicotine acetylcholine receptor (nAChR), signaling in breast cancer based on publications identified using the keywords “secondhand smoke (SHS)”, “Nitrosamines” and “breast cancer”. Furthermore, this review considers the risk of NNK to the public in an effort to reduce exposure to SHS in women and their chances of developing breast cancer.
Delivering drugs selectively to cancer cells but not to nearby normal cells is a major obstacle in drug therapy. In this study, lithocholic acid (LCA), a potent anti-cancer drug, is converted to two forms of poly(ethyleneglycol) (PEG) conjugates, viz., PEG-LCA (PL) and lactobionic acid (LBA) conjugated PEG-LCA (LPL). The latter form contains a galactose ligand in LBA to target the hepatocytes. Both forms are self-assembled to form nanoparticle formulation, and they have high potency than LCA to kill HepG2 cancer cells, sparing normal LO2 cells. Besides, LPL has high specificity to mouse liver cells in vivo. Western blot results confirm that the cell death is occurred through apoptosis induced by LPL nanoparticles. In conclusion, the induction of apoptosis and cell death is much more efficient with LPL nanoparticles than LCA molecules.
Our results strongly confirm the tumorigenic role of Rab25 in tobacco carcinogen-induced lung cancer and hence demonstrate aerosol delivery of shRab25 as a therapeutic target for lung cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.