The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains including realtime monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate the more that $45 Billion market value of UAV usage. In this survey, we present UAV civil applications and their challenges. We also discuss current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including: charging challenges, collision avoidance and swarming challenges, and networking and security related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.
Unmanned aerial vehicles (UAVs) can be used as aerial wireless base stations when cellular networks go down. Prior studies on UAV-based wireless coverage typically consider an Air-to-Ground path loss model, which assumes that the users are outdoor and they are located on a 2D plane. In this paper, we propose using a single UAV to provide wireless coverage for indoor users inside a high-rise building under disaster situations (such as earthquakes or floods), when cellular networks are down. We assume that the locations of indoor users are uniformly distributed in each floor and we propose a particle swarm optimization algorithm to find an efficient 3D placement of a UAV that minimizes the total transmit power required to cover the indoor users.Index Terms-Unmanned aerial vehicles, Outdoor-to-Indoor path loss model, particle swarm optimization.
In this paper, the efficient 3D placement of UAV as an aerial base station in providing wireless coverage for users in a small and large coverage area is investigated. In the case of providing wireless coverage for outdoor and indoor users in a small area, the Particle Swarm Optimization (PSO) and K-means with Ternary Search (KTS) algorithms are invoked to find an efficient 3D location of a single UAV with the objective of minimizing its required transmit power. It was observed that a single UAV at the 3D location found using the PSO algorithm requires less transmit power, by a factor of 1/5 compared to that when using the KTS algorithm. In the case of providing wireless coverage for users in three different shapes of a large coverage area, namely square, rectangle and circular regions, the problems of finding an efficient placement of multiple UAVs equipped with a directional antenna are formulated with the objective to maximize the coverage area and coverage density using the Circle Packing Theory (CPT). Then, the UAV efficient altitude placement is formulated with the objective of minimizing its required transmit power. It is observed that the large number of UAVs does not necessarily result in the maximum coverage density. Based on the simulation results, the deployment of 16, 19 and 26 UAVs is capable of providing the maximum coverage density of 78.5%, 82.5% and 80.3% for the case of a square region with the dimensions of 2 km × 2 km, a rectangle region with the dimensions of 6 km × 1.8 km and a circular region with the radius of 1.125 km, respectively. These observations are obtained when the UAVs are located at the optimum altitude, where the required transmit power for each UAV is reasonably small.
Unmanned aerial vehicles (UAVs) can be deployed as backup aerial base stations due to cellular outage either during or post natural disaster. In this paper, an approach involving multi-UAV three-dimensional (3D) deployment with power-efficient planning was proposed with the objective of minimizing the number of UAVs used to provide wireless coverage to all outdoor and indoor users that minimizes the required UAV transmit power and satisfies users’ required data rate. More specifically, the proposed algorithm iteratively invoked a clustering algorithm and an efficient UAV 3D placement algorithm, which aimed for maximum wireless coverage using the minimum number of UAVs while minimizing the required UAV transmit power. Two scenarios where users are uniformly and non-uniformly distributed were considered. The proposed algorithm that employed a Particle Swarm Optimization (PSO)-based clustering algorithm resulted in a lower number of UAVs needed to serve all users compared with that when a K-means clustering algorithm was employed. Furthermore, the proposed algorithm that iteratively invoked a PSO-based clustering algorithm and PSO-based efficient UAV 3D placement algorithms reduced the execution time by a factor of ≈1/17 and ≈1/79, respectively, compared to that when the Genetic Algorithm (GA)-based and Artificial Bees Colony (ABC)-based efficient UAV 3D placement algorithms were employed. For the uniform distribution scenario, it was observed that the proposed algorithm required six UAVs to ensure 100% user coverage, whilst the benchmarker algorithm that utilized Circle Packing Theory (CPT) required five UAVs but at the expense of 67% of coverage density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.