Most tissues of the body harbor resident macrophages. Yet, macrophages are phenotypically and functionally heterogeneous, a reflection of the diversity of tissue environments in which they reside. In addition to maintaining tissue homeostasis and responding to invading pathogens, macrophages contribute to numerous pathological processes, making them an attractive potential target for therapeutic intervention. To do so, however, will require a detailed understanding of macrophage origins, the mechanisms that maintain them, and their functional attributes in different tissues and disease contexts.Macrophage ontology has long engendered controversy 1,2 . Nevertheless, the concept that tissue macrophages develop exclusively from circulating bone marrow-derived monocytes has prevailed for nearly a half century 3 . Accumulated evidence, however, including recent studies using sophisticated fate-mapping approaches, have determined that some tissue macrophages and their precursors are established embryonically in the yolk sac (YS) and fetal liver before the onset of definitive hematopoiesis [4][5][6][7][8][9][10][11] . Regardless of their origin, tissue macrophages can maintain themselves in adulthood by self-renewal independent of blood monocytes 12,13 .Gene-expression profiling of macrophage populations from several tissues has established that only a small number of transcripts are expressed by all macrophages 14 , indicating the importance of the context provided by the tissue when studying macrophage function in homeostasis and disease. The normal arterial wall contains many tissue resident macrophages that contribute crucially to immunity, tissue homeostasis and wound healing following injury 15. However, the regulatory networks, ancestry and mechanisms that maintain arterial macrophages remain unknown.Using gene expression analysis, we show that arterial macrophages constitute a distinct population among tissue macrophages. Multiple fate mapping approaches demonstrated that arterial macrophages arise embryonically from CX 3 CR1 + precursors and postnatally from bone marrow-derived monocytes that colonize the tissue during a brief period immediately after birth.In adulthood, arterial macrophages were maintained by CX 3 CR1-CX 3 CL1 interactions and local proliferation without significant further contribution from blood monocytes. Self-renewal also sustained arterial macrophages after severe depletion during polymicrobial sepsis, rapidly restoring them to functional homeostasis. ResultsPhenotype and gene expression profiling of arterial macrophages. (Fig. 1a).Principal component analysis revealed a distinct transcriptome in arterial macrophages, which clustered near other macrophage populations including microglia, alveolar macrophages, and splenic red pulp macrophages, as characterized by the Immunological Genome Consortium (Fig. 1b, Supplementary Fig. 1a) 14. Stringent comparison of gene-expression profiles among arterial, brain, alveolar and splenic red pulp macrophages revealed 212 transcripts that were at ...
Background Atherosclerotic lesions grow via the accumulation of leukocytes and oxidized lipoproteins in the vessel wall. Leukocytes can attenuate or augment atherosclerosis through the release of cytokines, chemokines, and other mediators. Deciphering how leukocytes develop, oppose and complement each other’s function, and shape the course of disease, can illuminate understanding of atherosclerosis. Innate response activator (IRA) B cells are a recently described population of GM-CSF-secreting cells of hitherto unknown function in atherosclerosis. Methods and Results Here we show that IRA B cells arise during atherosclerosis in mice and humans. In response to high cholesterol diet, IRA B cell numbers increase preferentially in secondary lymphoid organs via Myd88-dependent signaling. Mixed chimeric mice lacking B cell-derived GM-CSF develop smaller lesions with fewer macrophages and effector T cells. Mechanistically, IRA B cells promote the expansion of classical dendritic cells, which then generate IFNγ-producing TH1 cells. This IRA B cell-dependent TH1 skewing manifests in an IgG1 to IgG2c isotype switch in the immunoglobulin response against oxidized lipoproteins. Conclusions GM-CSF-producing IRA B cells alter adaptive immune processes and shift the leukocyte response toward a TH1-associated mileu that aggravates atherosclerosis.
The role of a cytosolic phospholipase A 2 -α (cPLA 2 -α) in neutrophil arachidonic acid release, plateletactivating factor (PAF) biosynthesis, NADPH oxidase activation, and bacterial killing in vitro, and the innate immune response to bacterial infection in vivo was examined. cPLA 2 -α activity was blocked with the specific cPLA 2 -α inhibitor, Pyrrolidine-1 (human cells), or by cPLA 2 -α gene disruption (mice). cPLA 2 -α inhibition or gene disruption led to complete suppression of neutrophil arachidonate release and PAF biosynthesis but had no effect on neutrophil NADPH oxidase activation, FcγII/III or CD11b surface expression, primary or secondary granule secretion, or phagocytosis of Escherichia coli in vitro. In contrast, cPLA 2 -α inhibition or gene disruption diminished neutrophil-mediated E. coli killing in vitro, which was partially rescued by exogenous arachidonic acid or PAF but not leukotriene B 4 . Following intratracheal inoculation with live E. coli in vivo, pulmonary PAF biosynthesis, inflammatory cell infiltration, and clearance of E. coli were attenuated in cPLA 2 -α (−/−) mice compared with wild type littermates. These studies identify a novel * This work was supported by grants from The Physicians of Ontario through The P.S.I. Foundation (Grant 01-12 (to B. B. R.) and 98-049
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.