In this work we analyse the pollination community in a South American forest known as 'talar'. This is a vegetal woody community that inhabits fossil coastal banks characterized by seasonal temperate weather and calcareous soil, at the coast of the Río de la Plata, in the province of Buenos Aires, Argentina. We obtained data of the interactions between anthophylous insects and entomophylous flowering plants over an extensive period of time. We showed that pollination system parameters, such as partners' identity, system size, and connectance, fluctuated among months, when sampled year-long. Maximal network size occurred in early spring and early autumn, when both the number of mutualistic species and the number of interactions peaked, and this was also when network asymmetry was higher than average. Monthly connectance of the plant-flower visitor matrix decreased to its lowest values at these peaks. Available data suggest that cumulative traditional connectance (i.e. the connectance calculated as the whole number of interactions registered in the community divided by the full size system) underestimates actual connectance values by a factor of c. 3 ×. Monthly values of connectance decreased exponentially as system size increased, and the distribution of interactions per species followed powerlaw regimes for animals, and truncated power-law regimes for plants, in accordance with patterns previously deduced from among-network cumulative communities studies. We think that either within or and among pollination networks, systems that are organized as power-law regimes may be a basic property of these webs, and provide examples of the fact. Both seasonal changes and interactions between mutualists like competition, and some degree of facilitation, may be very important to understand the performance of the system as a whole, and the role and importance of different species in the community. We suggest that communities of plant -pollinators that exhibit extended activity, such as temperate or tropical seasonal ones, should be studied through consecutive plant-pollinator webs rather than cumulative ones. The partition of the system into smaller serial parts allows us to obtain outstanding information of every short period. This information is flattened by the average effect when we considered the combined analysis of the whole data.
We evaluated the adequacy of rotational grazing to improve rangeland condition in the Flooding Pampa region, eastern Argentina, comparing the floristic composition dynamic of the 2 main plant communities under rotational and continuous grazing over a study period of 4 years (1993-1996). The experiment was conducted in commercial farms located in 4 sites of the Flooding Pampa region. In each site, a couple of farms, one managed under rotational grazing (implemented in 1989) and an adjacent one managed under continuous grazing at a similar stocking rate (1 AU ha À1), constituted the replications of the experiment. Basal cover of species, litter, and bare soil were monitored in midslope and lowland grassland communities on each farm. Total plant basal cover in midslope and in lowland communities remained unchanged over the whole experimental period under both grazing methods. Under rotational grazing, litter cover was higher in both communities while the amount of bare soil showed a significant reduction in lowlands and a tendency to be lower in midslope. Basal cover of legumes, C 3 annual and C 3 perennial grasses was higher, while cover of C 4 prostrate grasses was lower under rotational grazing in the midslope community. In the lowland community, rotational grazing effects were evident only in the drier years, when higher cover of hydrophytic grasses and legumes and lower cover of forbs occurred. Plant species diversity did not change in response to grazing. In conclusion, rotational grazing promoted functional groups composed of high forage value species and reduced bare soil through the accumulation of litter. These changes indicate an improvement in rangeland condition and in carrying capacity. As the stocking rate was approximately 60% higher than the average stocking rate of the Flooding Pampa region, we believe that productivity and sustainability may be compatible by replacing continuous with rotational grazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.