Tree structure and diversity of a secondary Atlantic Forest resulting from the abandonment (ca. 70 years) of a shaded coffee (Coffea arabica) plantation was studied in southeastern Brazil. All trees with DBH ≥ 5 cm (alive and dead) were measured in 25 plots of 20 × 20 m. Out of the 1926 sampled trees, 1837 were living trees belonging to 116 species. The most important species (importance value -IV) in the community were Euterpe edulis (22.9% -present in all plots) and Piptadenia gonoacantha (16.5%). Euterpe edulis is a typical palm tree of high importance value in mature forests, comprising 41.2% of individuals. The results show a more mature tree community in relation to other secondary forests with the same abandonment period in the region, with high richness and diversity of species, high basal area, and low dead tree density. In addition, several endangered species were recorded with high conservation value for the regional flora. The results also showed many typical characteristics of "novel ecosystems" discussed here in order to value these environments, still neglected due to strong environmental human alterations.
Understanding the relationships between Coffea arabica L. and the native tree community of secondary forests regrowing after the abandonment of coffee plantations is important because, as a non-native species in the Neotropics, coffee can outcompete native species, reducing diversity and forests ecosystem services. We aimed to answer three questions: 1) Does coffee regeneration in secondary forests differ between shaded and unshaded abandoned plantations?; 2) How is coffee basal area related to structural attributes, species diversity and composition of the native community?; and 3) Do the relationships between coffee and native community differ between tree and sapling components? We sampled the tree and sapling components in a seasonal tropical dry forest that were previously used as shaded and unshaded coffee plantations. Coffee was the most important species in the sapling component of shaded systems, but was almost absent in unshaded ones. Coffee basal area was negatively related with the native density and absolute species richness of the sapling component; and was negatively related with tree density, and positively related with the percentage of pioneer individuals of the native tree component. Our results indicate that coffee persists in secondary forest communities even after more than 70 years of shaded-coffee plantations were abandoned, potentially reducing density and diversity of native species. Despite limitations, which hinder more general conclusions on coffee invasiveness in Brazilian secondary tropical forests, our results indicate that coffee is a strong competitor in the studied secondary forests and provide important insights for future research on this topic.
Questions: Woody encroachment in savannas has been associated with changing taxonomic composition and ecosystem function. Interestingly, there is little understanding of how encroachment impacts plant functional diversity and how those changes relate to plant demography, a crucial mediator between taxonomic composition and ecosystem function.
Location: Southeastern Brazil.
Methods: Using a landscape scale fire suppression experiment in a diverse Brazilian savanna, we quantify how change in species composition over seven years impacted vegetative and reproductive tree functional diversity as determined by new recruits, dead and surviving trees.
Results: Over seven years, tree above‐ground biomass increased by 15%, while total species richness did not change. Despite minor changes, species composition remained overall similar (82%), with few species contributing significantly to plot dissimilarity over time. There were small changes in vegetative traits, where the community‐weighted mean increased in maximum tree height (↑ 2.1%) and specific leaf area (↑ 5.3%), and decreased in wood density (↓ 1.3%) and bark thickness (↓ 9.4%). Changes in reproductive traits were larger than in vegetative traits, with an increase in the prevalence of monoecy (↑ 32.6%), dioecy (↑ 44.2%), large seeds (↑ 20.3%), animal‐mediated seed dispersal (↑ 4.9%) and pollination by very small insects (↑ 45.5%), and a decrease in the prevalence of hermaphroditism (↓ 9%), small seeds (6.8%) and pollination by small insects (12.5%). The overall decrease in bark thickness and increase in monoecy and dioecy were mainly driven by characters of the new recruits, while the overall increase in specific leaf area (SLA) and decrease in small seeds appeared largely determined by the loss of trees possessing those traits.
Conclusions: Encroachment leads to changes that are likely increasing ecosystem vulnerability to fire and drought. Further, the compositional changes observed appear to drive marked change in reproductive traits, indicating increasing dependence on animals for dispersal and reproduction. Understanding post‐hoc encroachment impacts in an era of widespread pervasive encroachment is fundamental to reconciling ecosystem functions such as nutrient cycling and pollination services as there is a loss of species with open ecosystem life‐history strategies. Among savannas, there remains an urgent need to understand relationships between woody cover and ecosystem function to determine thresholds in woody cover promoting resilient savanna ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.