According to the recent surveys, breast cancer has become one of the major causes of mortality rate among women. Breast cancer can be defined as a group of rapidly growing cells that lead to the formation of a lump or an extra mass in the breast tissue which consequently leads to the formation of tumor. Tumors can be classified as malignant (cancerous) or benign (non-cancerous). Feature selection is an important parameter in determining the classification systems. Machine learning methods are the most commonly used methods among researchers for breast cancer diagnosis. This paper proposes to investigate the WBCD (Wisconsin Breast Cancer Dataset) which comprises of 683 patients and implements the chosen features to train the back propagation neural network. The performance is then analyzed on the basis of classification accuracy, sensitivity, specificity, positive and negative predictor values, receiver operating characteristic curves and confusion matrix. A total of 9 features has been used to classify breast cancer with an accuracy of 99.27%. According to the recent surveys, breast cancer has become one of the major causes of mortality rate among women. Breast cancer can be defined as a group of rapidly growing cells that lead to the formation of a lump or an extra mass in the breast tissue which consequently leads to the formation of tumor. Tumors can be classified as malignant (cancerous) or benign (non-cancerous). Feature selection is an important parameter in determining the classification systems. Machine learning methods are the most commonly used methods among researchers for breast cancer diagnosis. This paper proposes to investigate the WBCD (Wisconsin Breast Cancer Dataset) which comprises of 683 patients and implements the chosen features to train the back propagation neural network. The performance is then analyzed on the basis of classification accuracy, sensitivity, specificity, positive and negative predictor values, receiver operating characteristic curves and confusion matrix. A total of 9 features has been used to classify breast cancer with an accuracy of 99.27%.
Medical image enhancement is an essential process for superior disease diagnosis as well as for detection of pathological lesion accurately. Computed Tomography (CT) is considered a vital medical imaging modality to evaluate numerous diseases such as tumors and vascular lesions. However, speckle noise corrupts the CT images and makes the clinical data analysis ambiguous. Therefore, for accurate diagnosis, medical image enhancement is a must for noise removal and sharp/clear images. In this work, a medical image enhancement algorithm has been proposed using log transform in an optimization framework. In order to achieve optimization, a well-known meta-heuristic algorithm, namely: Cuckoo search (CS) algorithm is used to determine the optimal parameter settings for log transform. The performance of the proposed technique is studied on a low contrast CT image dataset. Besides this, the results clearly show that the CS based approach has superior convergence and fitness values compared to PSO as the CS converge faster that proves the efficacy of the CS based technique. Finally, Image Quality Analysis (IQA) justifies the robustness of the proposed enhancement technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.