Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth's interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) dominated by hyperthermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geochemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and -13.8 per thousand PDB, respectively) and the adjacent divergent vent site (0.2 mM and -18.5 per thousand PDB, respectively), representing potential subsurface microbial methanogenesis, at least in the divergent vent emitting more 13C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoautotrophic microbial activity. Both cultivation and cultivation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney interiors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.
N -fold supersymmetry is an extension of the ordinary supersymmetry in onedimensional quantum mechanics. One of its major property is quasi-solvability, which means that energy eigenvalues can be obtained for a portion of the spectra. We show that recently found Type A N -fold supersymmetry can be constructed by using sl (2) algebra, which provides a basis for the quasi-solvability. By this construction we find a condition for the Type A N -fold supersymmetry which is less restrictive than the condition known previously. Several explicitly known models are also examined in the light of this construction.
Chemical tracers in seawater, as well as physical parameters such as temperature and salinity, have been measured to better characterize the dynamics of water convection and its spatiotemporal changes in the Sea of Japan (also called the Japan Sea), a semi-closed, hyperoxic marginal sea (maximum depth: ∼3,800 m) in the northwestern corner of the Pacific Ocean. Repeated conductivity, temperature, and depth (CTD) observations and measurements of dissolved oxygen, for more than 30 years, have confirmed that the bottom layer of the Japan Sea, with a thickness of ∼1 km below the boundary at a depth of ∼2,500 m, is characterized by vertical homogeneity with fluctuations of potential temperature and dissolved oxygen of <0.001• C and <0.5 µmol kg −1 , respectively. The timescale of the abyssal circulation in the Japan Sea has been estimated to be 100-300 years, using 14 C and other chemical tracers. Stable isotope analyses for dissolved He, O 2 and CH 4 have given us information on their unique geochemical cycles in the Japan Sea. Profiles of the short-lived radioisotope 222 Rn just above the sea bottom have brought new insights into the short-term lateral water movement with a timescale of several days in the Japan Sea bottom water. It is of special concern that the gradual deoxygenation and warming of the bottom water over the last 30 years have resulted in an ∼10% decrease in dissolved oxygen and ∼0.04• C increase in potential temperature, suggesting a change of the deep convection system in the Japan Sea. The temporal changes in the vertical profiles of tritium from 1984 to 1998 have suggested a shift of the abyssal circulation pattern from a "total (overall) convection mode" to a "shallow (partial) convection mode". It is likely that the global warming since the last century has hindered the formation of dense surface seawater and its ability to sink down to the bottom, isolating the bottom layer from the deep convection loop that is indispensable as the source of cold and oxygen-rich water. However, the decreasing trend of bottom dissolved oxygen between 1977 and 2010 was not monotonous; rather, it was interrupted by an occasional break in the winter of 2000-2001, when severely cold weather may have resulted in especially dense surface water to sink down to the bottom layer for its ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.