Liquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet. Here we show that the dry-wet transition is closely related to rearrangement of the gas bubbles, by simultaneously analysing the shape change of the bubbles and that of the entire foam in two dimensional foam. In addition, we also find a new state in quite low liquid fraction, which is named “superdry foam”. Whereas the shape change of the bubbles strongly depends on the change of the liquid fraction in the superdry foam, the shape of the bubbles does not change with changing the liquid fraction in the dry foam. Our results elucidate the relationship between the transitions and the macroscopic mechanical properties.
Macroscopic patterns in nature formed during crystal growth e.g. snow crystals have a significant influence on many material properties, such as macroscopic heat conduction, electrical conduction, and mechanical properties, even with the same microscopic crystal structure. Although crystal morphology has been extensively studied in bulk, the formation of patterns induced by re-crystallization during evaporation is still unclear. Here, we find a way to obtain concentric circles, a dendritic pattern, and a lattice pattern by pinning the edge of droplets using the coffee ring effect; only aggregates of crystallites are seen in the absence of pinning. Our systematic study shows that the macroscopic patterns depend both on initial concentration and evaporation rate. In addition, our qualitative analysis suggests that the local concentration of solute at the center of the pattern is related to the macroscopic patterns.
The states of foam are empirically classified into dry foam and wet foam by the volume fraction of the liquid. Recently, a transition between the dry foam state and the wet foam state has been found by characterizing the bubble shapes [Furuta et al., Sci. Rep. 6, 37506 (2016)2045-232210.1038/srep37506]. In the literature, it is indirectly ascertained that the transition from the dry to the wet form is related to the onset of the rearrangement of the bubbles, namely, the liquid fraction at which the bubbles become able to move to replace their positions. The bubble shape is a static property, and the rearrangement of the bubbles is a dynamic property. Thus, we investigate the relation between the bubble shape transition and the rearrangement event occurring in a collapsing process of the bubbles in a quasi-two-dimensional foam system. The current setup brings a good advantage to observe the above transitions, since the liquid fraction of the foam continuously changes in the system. It is revealed that the rearrangement of the bubbles takes place at the dry-wet transition point where the characteristics of the bubble shape change.
Universal relationships between the medium excitability and the angular velocity and the core radius of rigidly rotating spiral waves in excitable media are derived for situations where the wave front is a trigger wave and the wave back is a phase wave. Two universal limits restricting the region of existence of spiral waves in the parameter space are demonstrated. The predictions of the free-boundary approach are in good quantitative agreement with results from numerical reaction-diffusion simulations performed on the Kessler-Levine model.
Non-thermal Brownian motion of a particle in soft-mode turbulence (SMT) in the electroconvection of a nematic liquid crystal has been experimentally investigated to clarify the statistical and thermodynamical aspects of SMT using the Lagrangian picture in hydrodynamics. The effective temperature for SMT is obtained in two different ways based on the definition of the diffusion coefficients due to non-thermal particle fluctuations: the Einstein relation and the fluctuation theorem. The temperatures from both methods agree well and exhibit a high value of 10 6 K. They depend on the coarsegraining time, which reflects the anomalous properties of the macroscopic fluctuations in the SMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.