This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 °C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over ~ 1-μm scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 °C operational testing. These results advance the technology foundation for realizing long-term durable 500 °C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.
This work describes recent progress in the design, processing, and testing of significantly up-scaled 500 °C durable 4H-SiC junction field effect transistor (JFET) integrated circuit (IC) technology with two-level interconnect undergoing development at NASA Glenn Research Center. For the first time, stable electrical operation of semiconductor ICs for over one year at 500 °C in air atmosphere is reported. These groundbreaking durability results were attained on two-level interconnect JFET demonstration ICs with 175 or more transistors on each chip. This corresponds to a more than 7-fold increase in 500 °C-durable circuit complexity from the 24 transistor ring oscillator ICs reported at HiTEC 2016 [1]. These results advance the technology foundation for realizing long-term durable 500 °C ICs with increased functional capability for combustion engine sensing and control, planetary exploration, deep-well drilling monitoring, and other harsh-environment applications.
The TacSat-4 spacecraft carries a solar cell experiment characterizing a string of 3 triple-junction 1-sun solar cells and a string of triple junction solar cells under a flexible, linear Fresnel lens providing approximately 6 times solar concentration. TacSat-4 flies in a highly elliptical, four hour orbit, passing through proton and electron radiation belts 12 times per day. The damage to solar cells in this environment is severe. In this paper we examine the solar cell damage rates of the two solar cell strings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.