The development of efficient gene delivery systems targeting the lung endothelium remains a serious challenge. This study reports on the design and optimization of a multifunctional envelope‐type nanodevice (MEND) for an efficient siRNA delivery to the lung endothelium based on GALA‐peptide targeting ability. The incorporation of a pH‐sensitive lipid (YSK05) results in a dramatic improvement in silencing efficiency by enhancing endosomal escape, but this also causes a reduction in the lung selectivity. Contrary to the assumption that active targeting is largely dependent on the presence of a targeting ligand, the findings of the present study indicate that nanocarrier composition is critical for achieving the organ selectivity. Interestingly, helper lipids substantially mask the liver delivery resulting in optimum lung targeting. The optimized YSK05‐MEND is 40‐fold more efficient than a previously developed MEND, with a robust lung endothelium gene knockdown at small doses. The YSK05‐MEND strongly inhibits a metastatic lung cancer model and exerts superior control over lung metastasis compared to chemotherapy or the previously developed MEND. The YSK05‐MEND is well‐tolerated in mice after acute or chronic administration. As far as it is known, YSK05‐MEND achieves the most efficient lung endothelium gene silencing reported thus far with a median effective dose of 0.01 mg siRNA kg−1 while minimally affecting the endothelium of other organs.
Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these “humanized” mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.
IntroductionThe development of targeted drug delivery systems is a rapidly growing area in the field of nanomedicine.MethodsWe report herein on optimizing the targeting efficiency of a lipid nanoparticle (LNP) by manipulating the acid dissociation constant (pKa) value of its membrane, which reflects its ionization status. Instead of changing the chemical structure of the lipids to achieve this, we used a mixture of two types of pH-sensitive cationic lipids that show different pKa values in a single LNP. We mixed various ratios of YSK05 and YSK12-C4 lipids, which have pKa values of 6.50 and 8.00, respectively, in one formulation (referred to as YSK05/12-LNP).ResultsThe pKa of the YSK05/12-LNP was dependent not only on the molar ratio of each lipid but also on the individual contribution of each lipid to the final pKa (the YSK12-C4 lipid showed a higher contribution). Furthermore, we succeeded in targeting and delivering short interfering RNA to liver sinusoidal endothelial cells using one of the YSK05/12-LNPs which showed an optimum pKa value of 7.15 and an appropriate ionization status (~36% cationic charge) to permit the particles to be taken up by liver sinusoidal endothelial cells.ConclusionThis strategy has the potential for preparing custom LNPs with endless varieties of structures and final pKa values, and would have poten tial applications in drug delivery and ionic-based tissue targeting.
The immunosuppressive tumor microenvironment (TME) does not allow generation and expansion of anti-tumor effector cells. One of the potent immunosuppressive factors present in the TME is the indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, produced mainly by cancer cells and suppressive immune cells of myeloid origin. In fact, IDO+ myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs) tend to be more suppressive than their IDO¯ counterparts. Hence, therapeutic approaches that would target the IDO+ cells in the TME, while sparing the antigen-presenting functions of IDO¯ myeloid populations, are needed. Using an IDO-specific peptide vaccine (IDO-vaccine), we explored the possibility of generating effector cells against IDO and non-IDO tumor-derived antigens. For this, IDO-secreting (B16F10-melanoma) and non-IDO-secreting (TC-1) mouse tumor models were employed. We showed that IDO-vaccine significantly reduced tumor growth and enhanced survival of mice in both the tumor models, which associated with a robust induction of IDO-specific effector cells in the TME. IDO-vaccine significantly enhanced the anti-tumor efficacy of non-IDO tumor antigen-specific vaccines, leading to an increase in the number of total and antigen-specific activated CD8+ T cells (IFNγ+ and granzyme B+). Treatment with IDO-vaccine significantly reduced the numbers of IDO+ MDSCs and DCs, and immunosuppressive regulatory T cells in both tumor models, resulting in enhanced therapeutic ratios. Together, we showed that vaccination against IDO is a promising therapeutic option for both IDO-producing and non-IDO-producing tumors. IDO-vaccine selectively ablates the IDO+ compartment in the TME, leading to a significant enhancement of the immune responses against other tumor antigen-specific vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.