Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin's multidimensional applications, food attractiveness optimization, agro
Citrus fruits have been a commercially important crop for thousands of years. In addition, Citrus essential oils are valuable in the perfume, food, and beverage industries, and have also enjoyed use as aromatherapy and medicinal agents. This review summarizes the important biological activities and safety considerations of the essential oils of sweet orange (Citrus sinensis), bitter orange (Citrus aurantium), neroli (Citrus aurantium), orange petitgrain (Citrus aurantium), mandarin (Citrus reticulata), lemon (Citrus limon), lime (Citrus aurantifolia), grapefruit (Citrus × paradisi), bergamot (Citrus bergamia), Yuzu (Citrus junos), and kumquat (Citrus japonica).
Members of the genus Curcuma L. have been used in traditional medicine for centuries for treating gastrointestinal disorders, pain, inflammatory conditions, wounds, and for cancer prevention and antiaging, among others. Many of the biological activities of Curcuma species can be attributed to nonvolatile curcuminoids, but these plants also produce volatile chemicals. Essential oils, in general, have shown numerous beneficial effects for health maintenance and treatment of diseases. Essential oils from Curcuma spp., particularly C. longa, have demonstrated various health-related biological activities and several essential oil companies have recently marketed Curcuma oils. This review summarizes the volatile components of various Curcuma species, the biological activities of Curcuma essential oils, and potential safety concerns of Curcuma essential oils and their components.
Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques.
The current fossil fuel reserves are not sufficient to meet the increasing demand and very soon will become exhausted. Pollution, global warming, and inflated oil prices have led the quest for renewable energy sources. Algal biofuels represent a potential source of renewable energy. Algae, as the third generation feedstock, are suitable for biodiesel and bioethanol production due to their quick growth, excellent biomass yield, and high lipid and carbohydrate contents. With their huge potential, algae are expected to surpass the first and second generation feedstocks. Only a few thousand algal species have been investigated as possible biofuel sources, and none of them was ideal. This review summarizes the current status of algal biofuels, important steps of algal biofuel production, and the major commercial production challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.