The race for the discovery of enhancers at a genome-wide scale has been on since the commencement of next generation sequencing decades after the discovery of the first enhancer, SV40. A few enhancer-predicting features such as chromatin feature, histone modifications and sequence feature had been implemented with varying success rates. However, to date, there is no consensus yet on the single enhancer marker that can be employed to ultimately distinguish and uncover enhancers from the enormous genomic regions. Many supervised, unsupervised and semi-supervised computational approaches had emerged to complement and facilitate experimental approaches in enhancer discovery. In this review, we placed our focus on the recently emerged enhancer predictor tools that work on general enhancer features such as sequences, chromatin states and histone modifications, eRNA and of multiple feature approach. Comparisons of their prediction methods and outcomes were done across their functionally similar counterparts. We provide some recommendations and insights for future development of more comprehensive and robust tools.
BackgroundDiscrimination of transcription factor binding sites (TFBS) from background sequences plays a key role in computational motif discovery. Current clustering based algorithms employ homogeneous model for problem solving, which assumes that motifs and background signals can be equivalently characterized. This assumption has some limitations because both sequence signals have distinct properties.ResultsThis paper aims to develop a Self-Organizing Map (SOM) based clustering algorithm for extracting binding sites in DNA sequences. Our framework is based on a novel intra-node soft competitive procedure to achieve maximum discrimination of motifs from background signals in datasets. The intra-node competition is based on an adaptive weighting technique on two different signal models to better represent these two classes of signals. Using several real and artificial datasets, we compared our proposed method with several motif discovery tools. Compared to SOMBRERO, a state-of-the-art SOM based motif discovery tool, it is found that our algorithm can achieve significant improvements in the average precision rates (i.e., about 27%) on the real datasets without compromising its sensitivity. Our method also performed favourably comparing against other motif discovery tools.ConclusionsMotif discovery with model based clustering framework should consider the use of heterogeneous model to represent the two classes of signals in DNA sequences. Such heterogeneous model can achieve better signal discrimination compared to the homogeneous model.
Abstract-Convolutionary neural network (CNN) is a popular choice for supervised DNA motif prediction due to its excellent performances. To employ CNN, the input DNA sequences are required to be encoded as numerical values and represented as either vectors or multi-dimensional matrices. This paper evaluates a simple and more compact ordinal encoding method versus the popular one-hot encoding for DNA sequences. We compare the performances of both encoding methods using three sets of datasets enriched with DNA motifs. We found that the ordinal encoding performs comparable to the one-hot method but with significant reduction in training time. In addition, the one-hot encoding performances are rather consistent across various datasets but would require suitable CNN configuration to perform well. The ordinal encoding with matrix representation performs best in some of the evaluated datasets. This study implies that the performances of CNN for DNA motif discovery depends on the suitable design of the sequence encoding and representation. The good performances of the ordinal encoding method demonstrates that there are still rooms for improvement for the one-hot encoding method.
Abstract.To detect or discover motifs in DNA sequences, two important concepts related to existing computational approaches are motif model and similarity score. One of motif models, represented by a position frequency matrix (PFM), has been widely employed to search for putative motifs. Detection and discovery of motifs can be done by comparing kmers with a motif model, or clustering kmers according to some criteria. In the past, information content based similarity scores have been widely used in searching tools. In this paper, we present a mismatchbased matrix similarity score (namely, MISCORE) for motif searching and discovering purpose. The proposed MISCORE can be biologically interpreted as an evolutionary metric for predicting a kmer as a motif member or not. Weighting factors, which are meaningful for biological data mining practice, are introduced in the MISCORE. The effectiveness of the MISCORE is investigated through exploring its separability, recognizability and robustness. Three well-known information contentbased matrix similarity scores are compared, and results show that our MISCORE works well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.