Present research proposes the application of unsupervised and supervised machine-learning techniques to characterize Android malware families. More precisely, a novel unsupervised neural-projection method for dimensionality-reduction, namely, Beta Hebbian Learning (BHL), is applied to visually analyze such malware. Additionally, well-known supervised Decision Trees (DTs) are also applied for the first time in order to improve characterization of such families and compare the original features that are identified as the most important ones. The proposed techniques are validated when facing real-life Android malware data by means of the well-known and publicly available Malgenome dataset. Obtained results support the proposed approach, confirming the validity of BHL and DTs to gain deep knowledge on Android malware.
The analysis of the opinions and experiences of tourists is a key issue in tourist promotion. More precisely, forecasting whether a tourist will or will not recommend a given destination, based on his/her profile, is of utmost importance in order to optimize management actions. According to this idea, this research proposes the application of cutting-edge machine learning techniques in order to predict tourist recommendation of rural destinations. More precisely, classifiers based on supervised learning (namely Support Vector Machine, Decision Trees, and [Formula: see text]-Nearest Neighbor) are applied to survey data collected in the province of Burgos (Spain). Available data suffer from a common problem in real-life datasets (data unbalance) as there are very few negative recommendations. In order to address such problem, that penalizes learning, data balancing techniques have been also applied. The satisfactory results validate the proposed application, being a useful tool for tourist managers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.