The full knowledge of the morphological evolution of an historical masonry building, defined more as ‘structural aggregate’ than as ‘single construction’, together with the analysis of the architectural, structural, geological and geotechnical aspects, allow the assessment of the static safety and seismic vulnerability of the complex and the design of retrofit interventions. In the present paper, a Knowledge-Based-Approach is applied to the historical building ‘Palazzo La Sapienza’ in Pisa, allowing to provide reliable results concerning the actual structural condition of the building avoiding the strong computational effort usually associated to the execution of refined numerical analyses. In case of complex buildings, characterized by a high heterogeneity of materials, structural typologies, geometries and so on, the adoption of a global model is not always useful to represent the effective structural behaviour. The proposed approach shows how a deep multidisciplinary knowledge of the construction can limit the use of cumbersome numerical modelling and analysis, however reaching reliable and accurate results usable also in the current practice
A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.
Twenty years have passed from the most recent studies about the dynamic behavior of the leaning Tower of Pisa. Significant changes have occurred in the meantime, the most important ones concerning the soil-structure interaction. From 1999 to 2001, the foundation of the monument was consolidated through under-excavation, and the "Catino" at the basement was rigidly connected to the foundation. Moreover, in light of the recent advances in the field of earthquake engineering, past studies about the Tower must be revised. Therefore, the present research aims at providing new data and results about the structural response of the Tower under earthquake. As regards the experimental assessment of the Tower, the dynamic response of the structure recorded during some earthquakes has been analyzed in the time- and frequency-domain. An Array 2D test has been performed in the Square of Miracles to identify a soil profile suitable for site response analyses, thus allowing the definition of the free-field seismic inputs at the base of the Tower. On the other hand, a synthetic evaluation of the seismic input in terms of response spectra has been done by means of a hybrid approach that combines Probabilistic and Deterministic Seismic Hazard Assessment methods. Furthermore, natural accelerograms have been selected and scaled properly. A finite element model that takes into account the inclination of the structure has been elaborated, and it has been updated taking into account the available experimental results. Finally, current numerical and experimental efforts for enhancing the seismic characterization of the Tower have been illustrated
Abstract:The Leaning Tower of Pisa was built between 1173 and 1360 and began to lean at the beginning of its construction. Extensive investigations to reveal the causes of the tilting only began in the early 20th century. Although few earthquakes have been recorded, there is a renewed interest in the seismic behavior of the tower triggered by the availability of new data and technologies. This paper highlights the influence of using new strength-controlled constitutive models in case of 1D nonlinear response analysis. This is an aspect that has been poorly investigated. Most of the computer codes currently available for nonlinear seismic response analysis (SRA) of soil use constitutive models able to capture small-strain behavior, but the large-strain shear strength is left uncontrolled. This can significantly affect the assessment of a 1-D response analysis and the Leaning Tower's subsoil can be useful for this study as it represents a well-documented and well-characterized site. After a geological and geotechnical description of the subsoil profile and a synthesis of available data, the seismic input is defined. One-dimensional SRAs were carried out by means of a computer code which considers an equivalent-linear soil modelling and two codes which assume nonlinear soil response and permit to use strength-controlled constitutive models. All the parameters were calibrated on the basis of the same soil data, therefore allowing for a direct comparison of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.