Stingless bee honey has a distinctive flavor and sour taste compared to Apis mellifera honey. Currently, interest in farming stingless bees is growing among rural residents to meet the high demand for raw honey and honey-based products. Several studies on stingless bee honey have revealed various therapeutic properties for wound healing applications. These include antioxidant, antibacterial, anti-inflammatory, and moisturizing properties related to wound healing. The development of stingless bee honey for wound healing applications, such as incorporation into hydrogels, has attracted researchers worldwide. As a result, the effectiveness of stingless bee honey against wound infections can be improved in the future to optimize healing rates. This paper reviewed the physicochemical and therapeutic properties of stingless bee honey and its efficacy in treating wound infection, as well as the incorporation of stingless bee honey into hydrogels for optimized wound dressing.
Bone substitutes are derived from biological products or synthetic bone substitutes such as ceramics, polymers, metals, and organic or non-organic bone substitutes. Emerging three-dimensional (3D)-printing technologies are enabling the fabrication of bone scaffold with the precise specifications. 3D-printing allows controlled material placement for configuring porous tissue scaffolds with tailored properties such as mechanical stiffness, nutrient transport, and biological growth. Therefore, bone scaffolds with good biological and mechanical properties are needed to be used as a bone substitute in bone tissue engineering. However, inadequate mechanical strength is the major problem in current bone scaffolds fabrication. Therefore, the aim of this study is to design and to simulate the mechanical properties of 3D printed polylactic acid (PLA) bone scaffold with different pore geometries, which are circular, square, hexagonal and triangular. The scaffolds were designed and were simulated by using SolidWorks in determining the mechanical properties. Finite Element Analysis (FEA) of the PLA bone scaffold indicates that scaffolds with hexagonal pore shape has compressive strength of 241.0 MPa, which is matches with the human bone properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.