In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3–21.1 m2/g and significant thermal stability (480 °C–600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.
Tannin (TA) extracted from Acacia mangium and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), were used to modify and enhance the physical and electrochemical properties of polypyrrole (PPy) composite.
A dopamine (DA) biosensor was developed based on polypyrrole/tannin/cetyltrimethylammonium bromide (PPy/TA/CTAB) nanocomposite and central composite rotatable design (CCRD) was employed for the optimization of conditions. Chemical polymerization of the PPy/TA in the presence of a cationic surfactant, CTAB, reduced the particle size of composite and a rod‐like structure with a lumpy surface and high porosity was observed for nanocomposite justifying the highest current response for the modified electrode. Amperometry and differential pulse voltammetry analyses were applied for all electrochemical measurements and DA detection in the range of 0.5–100 μM. The good adhesion of nanocomposite on the electrode surface, as well as porosity and high surface area of the modified electrode, enhanced the diffusion of DA molecules inside the matrix. Amperometry analysis of the Screen printed carbon electrode/PPy/TA/CTAB modified electrode displayed a good sensitivity of 0.039 μA (μM)−1 toward DA with the limit of detection of 2.9 × 10–7 M. The modified biosensor also excludes the interfering species of ascorbic acid and uric acid which makes this sensor appropriate for DA determination. The proposed biosensor showed an acceptable reproducibility and repeatability with low relative standard deviations of 4.8% and 4.4%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.