In order to quantify degenerative and regenerative changes and analyze the contribution of multiple factors to the outcome after neurite transection, we cultured adult mouse dorsal root ganglion neurons, and with a precise laser beam, we transected the nerve fibers they extended. Cell preparations were continuously visualized for 24 h with time-lapse microscopy. More distal cuts caused a more elongated field of degeneration, while thicker neurites degenerated faster than thinner ones. Transected neurites degenerated more if the uncut neurites of the same neuron simultaneously degenerated. If any of these uncut processes regenerated, the transected neurites underwent less degeneration. Regeneration of neurites was limited to distal cuts. Unipolar neurons had shorter regeneration than multipolar ones. Branching slowed the regenerative process, while simultaneous degeneration of uncut neurites increased it. Proximal lesions, small neuronal size, and extensive and rapid neurite degeneration were predictive of death of an injured neuron, which typically displayed necrotic rather than apoptotic form. In conclusion, this in vitro model proved useful in unmasking many new aspects and correlates of mechanically-induced neurite injury.
La0.67Ca0.33MnO3 perovskite-type manganite was synthesized by high-energy ball milling raw oxides of La2O3 (purity 99.9%), CaCO3 (purity > 99%), and MnO (purity > 99%). The ratio of ball and powder weight was 10:1 and the rotating speed was set to 500 rpm. X-ray analysis indicated that La0.67Ca0.33MnO3 single phase was formed completely when milling time is up to 4 h. The peak intensity of perovskite structure decreased and a hump-like peak appeared with further milling time. When the milling time is longer than 40 h, the perovskite structure disappeared and the amorphous phase was formed completely. Scanning electron microscopy picture of 24 h milled sample showed that the particle size generally varies in a broad range from nanometer scale to a few µm. The magnetic measurements showed that ball milling samples have an inhomogeneous magnetic state and exhibit spin-glass like behavior. The signi cantly small magnetic entropy change and a remarkably broad temperature interval in entropy change were attributed to high degree of structural and magnetic disorder and broadening of magnetic transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.