Catalytic fast co-pyrolysis of sewage sludge and sawdust was performed using Py/GC-MS for pyrolytic product upgrades. Metal oxides (NiO and MoO3) and ZSM-5 catalysts had been introduced into single catalytic pyrolysis. The combination of NiO + MoO3 in mixed metal oxides (MMOs) was modified with ZSM-5 under a dual-catalyst with different catalytic layouts. In the pyrolysis process, the metal oxides specifically promoted the formation of phenols, ketones, and furans. ZSM-5 was proven to be more effective in producing aromatic hydrocarbons and phenols and in reducing the oxygenated compounds. The combination of MMOs with ZSM-5 effectively improved product distribution by increasing the production of aromatics and phenols. MMOs promoted the aromatics selectivity of undesirable PAHs (70.5 %), however, the addition of ZSM-5 to MMOs appeared to reduce and inhibit the formation of PAHs by 0.85 %. The highest yield of aromatics was obtained by the layout of the ZSM-5/MMO dual catalysts layout which was 21.6 %. Dual catalysts of MMOs and ZSM-5 in separated layout created promising effects in further Manuscript File increasing the production of aromatic hydrocarbons and phenols compared to the mixture of MMOs modified ZSM-5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.