Different operating scenarios can be used in a hybrid system based on a direct methanol fuel cell (DMFC) and a battery. In this paper, a DMFC system model is integrated into a model formed for a hybrid vehicular system which consists of a battery, a DMFC stack and its auxiliary equipments; and the model is simulated in Matlab/Simulink environment using a quasistatic approach. An algorithm for the energy management of the system is also developed considering the state of charge (SOC) of the battery. In the DMFC system model, the current and empirical data for the polarization curves as well as methanol crossover and water crossover rates are taken as the input parameters, whereas the stack voltage, the remaining methanol in the fuel tank, and the power demand of auxiliary equipments are taken as the output parameters. In this model, the methanol consumption, and the water and CO2 production are found applying mass balances for each component of the system. The results of the simulations help to give more insights into the operation of a DMFC based hybrid system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.