Transcranial direct current stimulation (tDCS) is an attractive protocol for stroke motor recovery. The current systematic review and meta-analysis investigated the effects of tDCS on motor learning post-stroke. Specifically, we determined long-term learning effects by examining motor improvements from baseline to at least 5 days after tDCS intervention and motor practise. 17 studies reported long-term retention testing (mean retention interval=43.8 days; SD=56.6 days) and qualified for inclusion in our meta-analysis. Assessing primary outcome measures for groups that received tDCS and motor practise versus sham control groups created 21 valid comparisons: (1) 16 clinical assessments and (2) 5 motor skill acquisition tests. A random effects model meta-analysis showed a significant overall effect size=0.59 ( p<0.0001; low heterogeneity, T 2
The use of transcranial direct current stimulation (tDCS) to enhance cognitive and motor functions has enjoyed a massive increase in popularity. Modifying neuroplasticity via non-invasive cortical stimulation has enormous potential to slow or even reverse declines in functions associated with ageing. The current meta-analysis evaluated the effects of tDCS on cognitive and motor performance in healthy older adults. Of the 81 studies identified, 25 qualified for inclusion. A random effects model meta-analysis revealed a significant overall standardized mean difference equal to 0.53 (SE = 0.09; medium heterogeneity: I 2 = 57.08%; and high fail-safe: N = 448). Five analyses on moderator variables indicated significant tDCS beneficial effects: (a) on both cognitive and motor task performances, (b) across a wide-range of cognitive tasks, (c) on specific brain areas, (d) stimulation offline (before) or online (during) the cognitive and motor tasks. Although the meta-analysis revealed robust support for enhancing both cognitive and motor performance, we outline a number of caveats on the use of tDCS.
A growing body of literature has reported the effects of dual tasks on gait performance in people with Parkinson's disease (PD). The purpose of this meta-analysis was to synthesize the existing literature and quantify the overall influence of dual tasks on gait performance in PD. A thorough literature search was conducted, and 19 studies met the stringent inclusion criteria. Two moderator variable analyses examined the dual-task effect by: (a) mean single-task gait speed for each study (≥ 1.1 m/s or < 1.1 m/s), and (b) the type of dual task (arithmetic, language, memory, and motor). Three main findings were revealed by a random effects model analysis. First, a strong negative effect of dual tasks on walking performance (SMD = −0.68) confirmed that gait performance is adversely affected by dual tasks in people with PD. Second, the significant negative effect of dual tasks is present regardless of the mean level of single-task gait speed in a study. Third, dual-task walking speed deteriorates regardless of the type of dual task. Together, these results confirm that dual tasks severely affect walking performances in people with PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.