Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.
An ecomimetic method is developed as an innovative and transdisciplinary design approach rooted in the field of biomimetics. This new method emulates the interrelated complexity of the parts of an ecosystem with the intent to design buildings that are more efficient, effective and holistic. Ecomimetics refers to the design of buildings that mimic ecosystem processes and functions. This approach provides potential opportunities for climate change adaptation and mitigation by optimizing the use of resources in buildings. One challenge to the application of ecomimetics in architecture is the lack of systematic methods supported by scientific research, which may prevent development in this field. A theoretical basis and the initial development of an ecomimetic design method is presented, with a description of each step of the design process. Ecological systems are selected for functional properties that match architectural design goals, and then design tools are used to abstract and transfer those properties to architectural systems. The design tools integrated in the method are from the fields of ecological engineering, systems dynamics and architecture. The case of the Eastgate Center in Harare, Zimbabwe, is used to illustrate the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.