Background and objectives: This study evaluated the effect of chronic consumption of saccharin on important physiological and biochemical parameters in rats. Materials and Methods: Male Wistar rats were used in this study and were divided into four groups: A control group and three experimental groups (groups 1, 2, and 3) were treated with different doses of saccharin at 2.5, 5, and 10 mg/kg, respectively. Each experimental group received sodium saccharin once per day for 120 days while the control group was treated with distilled water only. In addition to the evaluation of body weight, blood samples [total protein, albumin, glucose, lipid profile, alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), creatinine, and uric acid] and urine (isoprostane) were collected in zero time, and after 60 and 120 days for biochemical evaluation. Liver (catalase activity) and brain (8-hydroxy-2’-deoxyguanosine, 8-OHdG) tissues were collected at time zero and after 120 days. Results: The data showed that saccharin at 5 mg/kg increased body weight of treated rats after 60 (59%) and 120 (67%) days of treatment. Increased concentration of serum glucose was observed after treatment with saccharin at 5 (75% and 62%) and 10 mg/kg (43% and 40%) following 60 and 120 days, respectively. The concentration of albumin decreased after treatment with saccharin at 2.5 (34% and 36%), 5 (39% and 34%), and 10 mg/kg (15% and 21%) after 60 and 120 days of treatment, respectively. The activity of LDH and uric acid increased proportionally with dosage levels and consumption period. There was an increased concentration of creatinine after treatment with saccharin at 2.5 (125% and 68%), 5 (114% and 45%), and 10 mg/kg (26% and 31%) following 60 and 120 days, respectively. Catalase activity and 8-OHdG increased by 51% and 49%, respectively, following 120 days of treatment with saccharin at 2.5 mg/kg. Elevation in the concentration of isoprostane was observed after treatment with saccharin at all doses. Conclusions: The administration of saccharin throughout the treatment period was correlated with impaired kidney and liver function. Both hyperglycemic and obesity-inducing side effects were observed. There was an increased oxidative status of the liver, as well as exposure to increased oxidative stress demonstrated through the increased levels of isoprostane, uric acid, 8-OHdG, and activity of catalase. Therefore, it is suggested that saccharin is unsafe to be included in the diet.
Aspartame (ASP) is a sugar substitute. Its use rose because it has been demonstrated to have deleterious effects after being metabolized. In the presence of antioxidant vitamins C or E, the effects of ASP on reproductive hormones of adult male and female Albino Wister rats were investigated. A total of eighty male and female rats were used in this study. The rats were divided into four groups: group 1, received no treatment; group 2, received ASP at 40 mg/kg BW; group 3, received ASP at 40 mg/kg BW with vitamin C at 150 mg/kg BW; and group 4, received ASP at 40 mg/kg BW and vitamin E at 100 mg/kg BW. All treatments were given orally by gavage needle once daily for consecutive 90 days. The levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone hormone (TH) were measured after 90 days in blood plasma. In comparison with the control group, ASP treatment resulted in lower levels of E2, FSH, and LH in male and female rats. When the antioxidants vitamin C or E was given, the effects of ASP were reversed, and the levels of E2, LH, and FSH were increased. The testosterone hormone was likewise significantly increased by ASP, but testosterone hormone concentrations were decreased by vitamin C or E treatments. Long-term ASP consumption caused interfering with testicular and ovarian hormonal activity, while vitamins C and E on the other hand, overcome longstanding consumption ASP's effects.
The present study was conducted to evaluate the effect of Cumin on diabetes mellitus induced by alloxan in rats. Male Wister rats were used, and randomly divided into five groups (6-8 rats for each group): The first group: was administered distilled water and served as normal control, the second group: induced diabetes by single subcutaneous injection of alloxan 100 mg/kg.body weight and served as diabetic control, the 3,4,5 groups was administered 50,100,200 gm/kg of rat's forage respectively for four weeks, then diabetes are induced in this groups by same route as above. Cumin treatment in all doses lead to significant decrease glucose levels, and triglyceride and significant decrease in cholesterol level in dose 100, 200 gm/kg of forage and no change occur in total protein level. These results indicate that cumin have a role in delaying of diabetes through the effects of cumin in decrease some biochemical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.