The level of the products of lipid peroxidation measured as the thiobarbituric acid reactive substances (TBARS) and activity of enzymes of glutathione antioxidant protection system in spermatozoa were studied. It was shown that mean levels of TBARS in sperm cells of infertile men with oligozoo-, astenozoo-, oligoastenozoo-and leucocytospermia were 1.6-, 2.0-, 2.0-and 2.7-fold higher, respectively, compared with such levels in the fertile men. The glutathione peroxidase activity was decreased 2.2-fold in patients with oligozoospermia, 2.8-fold in patients with astenozoo-and oligoastenozoospermia and 3.8-fold in patients with leucocytospermia. It was found that glutathione reductase activity in patients with oligozoo-, astenozoo-, oligoastenozoo-and leucocytospermia were 2.3-, 1.6-, 1.7-and 3.3-fold lower than that in normozoospermic men, respectively. In addition, the glutathione transferase activity was decreased 1.8-2.1-fold in patients with oligozoo-, astenozoo-and oligoastenozoospermia and 5.0-fold in patients with leuco cytospermia in comparison with healthy donors. The most significant changes were observed in the infertile men with leucocytospermia. This manifestation could be explained by the fact that white blood cells stimulate the formation of reactive oxygen species, induction and development of oxidative stress in sperm cells.
SummaryBackgroundInfertility is an important worldwide problem which affects 10–15% of couples globally. Altered NO production has also been implicated in the pathogenesis of the male infertility. The present study was designed to evaluate the changes in the activity of NO-synthase (NOS) and arginase in spermatozoa of patients with infertility.MethodsThe total NOS, Ca2+-dependent constitutive (cNOS) and Ca2+-independent inducible (iNOS) activity and arginase activity were assessed in sperm cells of patients with different forms of pathospermia.ResultsWe found a significant increase in iNOS activity, but significantly decreased cNOS and arginase activity in sperm cells of infertile men vs fertile, normozoospermic men (p<0.001). The arginase/NOS ratio significantly decreased compared to control group. The iNOS/cNOS ratio was drastically increased in patients with decreased fertility potential indicating predominance of iNOS. Men with leuko cytospermia were distinguished to have the most express iNOS activity.ConclusionsThese observations provide evidence for a disturbed balance between the L-arginine metabolic pathways in sperm cells of infertile men. This imbalance includes the considerable activation of the inducible isoform of NO-synthase accompanied by significant inhibition of its constitutive isoform which indicates disturbances in NO production. In patients with decreased fertility potential the arginase/NOS was shifted towards predominance of iNOS-derived NO production.
Background: Oxidative stress is considered as one of the causes of male subfertility or infertility. Among antioxidant enzymes, the crucial role belongs to glutathione S -transferases (GSTs). Data on the biological role of GSTs in the defense mechanisms of sperm cells in fertile and infertile men are limited. Aim: The aim of this study was to demonstrate the functional role of GSTs in sperm cells on the model of H 2 O 2 -induced stress on human ejaculated spermatozoa obtained from both normospermic and pathospermic patients. Subjects and Methods: We used a H 2 O 2 -induced stress on human ejaculated spermatozoa obtained from both normospermic and pathospermic patients. Results: Here, we report the effect of GST inhibitor ethacrynic acid on sperm motility and viability. Pharmacological inhibition of sperm GSTs activity leads to spermal membrane damage and rejected in the loss of motility and decrease of viability. For similar treatment conditions, thiobarbituric acid reactive substance (TBARS) levels increased significantly leading to decrease in sperm motility and viability. It is suggested that these functional impairments are related to the intensification of lipid peroxidation as expressed by TBARS levels in spermal membranes after GST inhibitor treatment. Conclusion: This study provides evidence that sperm GSTs are important in the defense mechanism against oxidative stress. Evaluation of GSTs activity in sperm cells of infertile men can be helpful in fertility assessment and for the evaluation of treatment by antioxidants.
Hyperproduction of reactive oxygen species can damage sperm cells and is considered to be one of the mechanisms of male infertility. Cell protection from the damaging effects of free radicals and lipid peroxidation products is generally determined by the degree of antioxidant protection. Glutathione is non-enzymatic antioxidant which plays an important protective role against oxidative damages and lipid peroxidation. The aim of the present work is to determine the content of reduced and oxidized glutathione in sperm cells of infertile men. Semen samples from 20 fertile men (normozoospermics) and 72 infertile patients (12 oligozoospermics, 17 asthenozoospermics, 10 oligoasthenozoospermics and 33 leucocytospermic) were used. The total, oxidized (GSSG) and reduced (GSH) glutathione levels were measured spectrophotometrically. The levels of total glutathione were significantly lower in the spermatozoa of patients with oligozoo-, asthenozoo- and oligoasthenozoospermia than in the control. Infertile groups showed significantly decreased values of reduced glutathione in sperm cells vs. fertile men, indicating an alteration of oxidative status. The oxidized glutathione levels in sperm cells of infertile men did not differ from those of normozoospermic men with proven fertility. The GSH/GSSG ratio was significantly decreased in the oligo-, astheno- and oligoasthenozoospermic groups compared to the normozoospermic group. In patients with leucocytospermia the GSH/GSSG ratio was lower but these changes were not significant. In addition, glutathione peroxidase activity in sperm cells was decreased in patients with oligozoo-, astenozoo-, oligoastenozoospermia and with leucocytospermia. The most significant changes in glutathione peroxidase activity were observed in infertile men with leucocytospermia. Decreased GSH/GSSG ratio indicates a decline in redox-potential of the glutathione system in sperm cells of men with decreased fertilizing potential. Redistribution between oxidized and reduced forms of glutathione can be caused by depletion of intracellular stores of glutathione and intensification of lipid peroxidation processes. This leads to increased production of reactive oxygen species, further depletion of antioxidant pools and disturbances of structure and function of spermatozoa. Our results indicate that the evaluation of reduced glutathione level and GSH/GSSG ratio in sperm cells of infertile men can be helpful in fertility assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.