In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor/acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by ''Rule 07'' and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of longwavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.
We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation-recombination and 1/f noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.