The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.
The processing of raw data from modern astronomical instruments is often carried out nowadays using dedicated software, known as pipelines, largely run in automated operation. In this paper we describe the data reduction pipeline of the Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph operated at the ESO Paranal Observatory. This spectrograph is a complex machine: it records data of 1152 separate spatial elements on detectors in its 24 integral field units. Efficiently handling such data requires sophisticated software with a high degree of automation and parallelization. We describe the algorithms of all processing steps that operate on calibrations and science data in detail, and explain how the raw science data is transformed into calibrated datacubes. We finally check the quality of selected procedures and output data products, and demonstrate that the pipeline provides datacubes ready for scientific analysis.
The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin² sampled at 0.2x0.2 arcsec² and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report the performance achieved with the first integral field unit.
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photomultiplier tubes buried deep in the polar ice between 1500 m and 2000 m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector.The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photomultipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 • accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.