The packing of electronic molecules into planar structures and an ensured pi-pi interaction within the plane are preferred for efficient organic transistors. Thin films of organic electronics are exemplar, but the widely adopted molecular design and associated fabrication lead to limited ordering in multistack construction motifs. Here we demonstrate self-assembled nanolayers of organic molecules having potential electronic utility using an amphiphilic silane as a building block. Unlike a cross-linked (tetrahedral) configuration found in conventional siloxane networks, a linear polymer chain is produced following silane polycondensation. As a result, hydrophobic branches plus a noncovalent pi-pi interlocking between the molecules promote planar packing and continuous stacking along the surface normal. In contrast to conventional pi-pi stacking or hydrogen bonding pathways in a fibrous construct, multistacked nanolayers with coexisting pi-pi and herringbone interlocking can provide unmatched properties and processing convenience in molecular electronics.
Controlled self-assembly of polar aromatic silane leads to the formation of well-ordered lamellar structures. Graphite-like features are clearly visible with a scanning electron microscope (SEM). In addition, X-ray diffraction (XRD) patterns suggest a d spacing of 14.28 A along the z-axis and 4.42 A in the xy plane, which all agree with theoretical modeling. Constructing multistacks of silane molecules with a high degree of ordering is a daunting task. Amorphous monolayers are frequently reported. Aggravated van der Waals interaction, pi-pi electron overlapping, and solvophobic interactions can all lead to the formation of multistacks. The importance of a dipole to the ordered stacking is essentially unknown. This work suggests that a strong dipole-dipole interaction can be another important driving force in forming lamellar structures. The resulting large electrostatic interactions between the dipole and water provide an excellent thermal stability for these lamellas up to 350 degrees C. Organized, layered structures with a permanent dipole can be used in piezoelectric devices or as active surfaces to bind polar molecules, such as toxic gas, methanol, or DNA.
The authors developed a new technique to create micro-and nanometer scale structures on curved free-standing objects by combining embossing/imprinting lithography approaches with mechanical loadings on elastic films. Embossing/imprinting generates small structures and mechanical loading determines shape or geometry of the final object. As a result, a portion of the tubes with a radius between 0.5 and 3.5 mm and a portion of the spheres with a radius between 2.4 and 7.0 mm were fabricated with grating line features ͑period of 700 nm͒ and microlens array features ͑lens radius of 2.5 m͒ atop, respectively. It was found that both static analyses and finite element models can give good estimates on the radii of those curved objects, based on the dimension of the two layers, loading format, as well as mechanic strains. Thus, good control over shape and dimension of the free-standing structure can be achieved.
Franck−Condon coupling to the electronic structure of anthracene silane isomer complexes self-assembled on a silicon oxide surface has been measured by high-resolution photoelectron emission spectroscopy. Our results are in strong agreement with theoretical semiempirical calculations and gas phase measurements. The Franck−Condon vibronic fine structure observed in the high resolution photoemission spectra exhibits a strong dependence on the isomer, in particular, the anthracene functional group orientation with respect to the surface normal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.