E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. p120-Catenin and δ-catenin are known to bind to similar juxtamembrane regions of E-cadherin, and p120-catenin is known to stabilize E-cadherin. However, the function of competition between p120-catenin and δ-catenin for the E-cadherin has not been fully explained. In this report, we show that cells overexpressing δ-catenin contain less p120-catenin than control cells at cell-cell interface and that this causes the re-localization of p120-catenin from the plasma membrane to the cytosol. We show that successful binding by one to E-cadherin adversely affects the stability of the other.
Accumulated evidence suggests that aberrant regulation of δ-catenin leads to pathological consequences such as mental retardation and cognitive dysfunction. This study revealed that 14-3-3ɛ/ζ stabilizes δ-catenin, with different binding regions involved in the interaction. Furthermore, the specific inhibition of the interaction of 14-3-3 with δ-catenin reduced levels of δ-catenin and significantly impaired the capacity of δ-catenin to induce dendritic branching in both NIH3T3 fibroblasts and primary hippocampal neurons. However, the S1094A δ-catenin mutant, which cannot interact with 14-3-3ζ, still retained the capability of inducing dendrogenesis. Taken together, these results elucidate the underlying events that regulate the stability of δ-catenin and δ-catenin-induced dendrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.