This study explores the estimation of finite population total. For many years design-based approach dominated the scene in statistical inference in sample surveys. The scenario has since changed with emergence of the other approaches (Model-Based, Model-Assisted and the Randomization-Assisted), which have proved to rival the conventional approach. This paper focuses on a model based approach. Within this framework a nonparametric regression estimator for finite population total is developed. The nonparametric technique has been found from previous studies to be advantageous than its parametric counterpart in terms of robustness and flexibility. Kernel smoother has been used in construction of the estimator. The challenge of the boundary problem encountered with the Nadaraya-Watson estimator has been addressed by modifying it using reflection technique. The performance of the proposed estimator has been compared to the design-based Horvitz Thompson estimator and the model –based nonparametric regression estimator proposed by (Dorfman, 1992) and the ratio estimator using simulated data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.