Premature exposure of membranes and subsequent and consequent exposure of implants results in impaired bone healing. Certain barrier membranes, as used in group OS, are apparently capable of supporting gingival healing even when prematurely exposed that could be advantageous in GBR procedures.
Recession defects may be covered using ADMA or CTG, with no practical difference. However, CTG results in significantly greater gain of keratinized gingiva.
Emdogain (EMD), a formulation of Enamel Matrix Proteins (EMP), is used clinically for periodontal regeneration, where it stimulates cementum formation and promotes gingival healing. In this study, we investigated the in vitro effects of EMD on rat bone marrow stromal cells (BMSC) and gingival fibroblasts (GF). EMD (at 25 micro g/mL) increased the osteogenic capacity of bone marrow, as evidenced by approximately three-fold increase in BMSC cell number and approximately two-fold increase in alkaline phosphatase (ALP) activity and mineralized nodule formation. The presence of EMD in the initial stages (first 48 hrs) of the culture was crucial for this effect. In contrast, EMD did not induce osteoblastic differentiation of GF (evidenced by lack of mineralization or ALP activity) but increased up to two-fold both their number and the amount of matrix produced. These in vitro data on BMSC and GF could explain the promotive effect of EMD on bone formation and connective tissue regeneration, respectively.
CLMs were more resistant to tissue degradation than NCLMs, and maintained integrity during the study. Neither membrane was resistant to degradation when exposed to the oral environment. CLMs were associated with a higher incidence of tissue perforations. In non-perforated sites, CLM ossification at or within the membrane was occasionally observed.
Both cross-linked and non-cross-linked membranes were resistant to tissue degradation and maintained continuity throughout the study. However, none of the membranes was resistant to degradation when exposed to the oral environment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.