Osteopontin (OPN) is a secreted glycoprotein with mineral- and cell-binding properties that can regulate cell activities through integrin receptors. Previously, we identified an intracellular form of osteopontin with a perimembranous distribution in migrating fetal fibroblasts (Zohar et al., J Cell Physiol 170:88-98, 1997). Since OPN and CD44 expression are increased in migrating cells, we analyzed the relationship of these proteins with immunofluorescence and confocal microscopy. A distinct co-localization of perimembranous OPN and cell-surface CD44 was observed in fetal fibroblasts, periodontal ligament cells, activated macrophages, and metastatic breast cancer cells. The co-localization of OPN and CD44 was prominent at the leading edge of migrating fibroblasts, where OPN also co-localized with the ezrin/radixin/moesin (ERM) protein ezrin, as well as in cell processes and at attachment sites of hyaluronan-coated beads. The subcortical location of OPN in these cells was verified by cell-surface biotinylation experiments in which biotinylated CD44 and non-biotinylated OPN were isolated from complexes formed with hyaluronan-coated beads and identified with immunoblotting. That perimembranous OPN represents secreted protein internalized by endocytosis or phagocytosis appeared to be unlikely since exogenous OPN that was added to cell cultures could not be detected inside the cells. A physical association with OPN, CD44, and ERM, but not with vinculin or alpha-actin, was indicated by immunoadsorption and immunoblotting of cell proteins in complexes extracted from hyaluronan-coated beads. The functional significance of OPN in this complex was demonstrated using OPN-/- and CD-/- mouse fibroblasts which displayed impaired migration and a reduced attachment to hyaluronan-coated beads. These studies indicate that OPN exists as an integral component of a hyaluronan-CD44-ERM attachment complex that is involved in the migration of embryonic fibroblasts, activated macrophages, and metastatic cells.
Abstract-Osteopontin (OPN) is a multifunctional cytokine that is strongly expressed in healing wounds and fibrotic lesions, both of which are characterized by the formation of myofibroblasts. We examined the role of OPN in myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor-1. In cultured cardiac or dermal fibroblasts treated with transforming growth factor-1, there was a 2-to 5-fold increase in the expression of the myofibroblast markers ␣-smooth muscle actin and extradomain A fibronectin but no significant increase of these proteins in OPN-null fibroblasts. Phalloidin staining for actin filaments and immunostaining for ␣-smooth muscle actin and focal adhesion proteins showed reduced stress fibers, focal adhesions, and lamellipodia in OPN-null fibroblasts compared with wild-type cells. OPN-null fibroblasts exhibited 40% to 60% less spreading, 50% less resistance to detachment by shear force, and a Ϸ3-fold reduction in collagen gel contraction. These defects were partially rescued by ectopic expression of OPN. Mass spectrometric analysis of proteins in focal adhesions formed on collagen type I beads revealed an enrichment of HMGB1 protein in wild-type cells, whereas HMGB1 was not detected in OPN-null cells. Treatment of wild-type cells with small interfering RNA to knock down OPN reduced transforming growth factor-1-induced ␣-smooth muscle actin and HMGB1 to levels observed in OPN-null cells. These studies demonstrate that OPN is required for the differentiation and activity of myofibroblasts formed in response to the profibrotic cytokine transforming growth factor-1. (Circ Res. 2008;102:319-327.)
Recession defects may be covered using ADMA or CTG, with no practical difference. However, CTG results in significantly greater gain of keratinized gingiva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.