Proton relay in cyclic 7‐hydroxyquinoline–(alcohol)2 complexes (see picture) has been explored in nonpolar solvents. The asymmetric triple proton transfer has an unusually large, temperature‐independent, and viscosity‐dependent kinetic isotope effect. Heavy‐atom motions (wavy arrow) of solvent and bridging molecules allow proton tunneling by assisting the complex to reach the optimal precursor configuration.
With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics.
We have synthesized a novel class of imidazole-based excited-state intramolecular proton-transfer (ESIPT) materials, i.e., hydroxy-substituted tetraphenylimidazole (HPI) and its derivative HPI-Ac, which formed large single crystals exhibiting intense blue fluorescence and amplified spontaneous emission (ASE). Transparent, clear, and well-defined fluorescent single crystals of HPI-Ac as large as 20 mm x 25 mm x 5 mm were easily grown from its dilute solution. From the X-ray crystallographic analysis and semiempirical molecular orbital calculation, it was deduced that the four phenyl groups substituted into the imidazole ring of HPI and HPI-Ac allowed the crystals free from concentration quenching of fluorescence by limiting the excessive tight-stacking responsible for intermolecular vibrational coupling and relevant nonradiative relaxation. Fluorescence spectral narrowing and efficient ASE were observed in the HPI-Ac single crystal even at low excitation levels attributed to the intrinsic four-level ESIPT photocycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.